Solve for x
x = \frac{3000 \sqrt[3]{35}}{2593} \approx 3.78449631
Graph
Share
Copied to clipboard
30^{2}\sqrt[3]{35}+x\times 32=809.9x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
900\sqrt[3]{35}+x\times 32=809.9x
Calculate 30 to the power of 2 and get 900.
900\sqrt[3]{35}+x\times 32-809.9x=0
Subtract 809.9x from both sides.
900\sqrt[3]{35}-777.9x=0
Combine x\times 32 and -809.9x to get -777.9x.
-777.9x=-900\sqrt[3]{35}
Subtract 900\sqrt[3]{35} from both sides. Anything subtracted from zero gives its negation.
\frac{-777.9x}{-777.9}=-\frac{900\sqrt[3]{35}}{-777.9}
Divide both sides of the equation by -777.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{900\sqrt[3]{35}}{-777.9}
Dividing by -777.9 undoes the multiplication by -777.9.
x=\frac{3000\sqrt[3]{35}}{2593}
Divide -900\sqrt[3]{35} by -777.9 by multiplying -900\sqrt[3]{35} by the reciprocal of -777.9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}