Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(30+20i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-5i.
\frac{\left(30+20i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(30+20i\right)\left(1-5i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)i^{2}}{26}
Multiply complex numbers 30+20i and 1-5i like you multiply binomials.
\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{30-150i+20i+100}{26}
Do the multiplications in 30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right).
\frac{30+100+\left(-150+20\right)i}{26}
Combine the real and imaginary parts in 30-150i+20i+100.
\frac{130-130i}{26}
Do the additions in 30+100+\left(-150+20\right)i.
5-5i
Divide 130-130i by 26 to get 5-5i.
Re(\frac{\left(30+20i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)})
Multiply both numerator and denominator of \frac{30+20i}{1+5i} by the complex conjugate of the denominator, 1-5i.
Re(\frac{\left(30+20i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(30+20i\right)\left(1-5i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)i^{2}}{26})
Multiply complex numbers 30+20i and 1-5i like you multiply binomials.
Re(\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{30-150i+20i+100}{26})
Do the multiplications in 30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right).
Re(\frac{30+100+\left(-150+20\right)i}{26})
Combine the real and imaginary parts in 30-150i+20i+100.
Re(\frac{130-130i}{26})
Do the additions in 30+100+\left(-150+20\right)i.
Re(5-5i)
Divide 130-130i by 26 to get 5-5i.
5
The real part of 5-5i is 5.