Evaluate
5-5i
Real Part
5
Share
Copied to clipboard
\frac{\left(30+20i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-5i.
\frac{\left(30+20i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(30+20i\right)\left(1-5i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)i^{2}}{26}
Multiply complex numbers 30+20i and 1-5i like you multiply binomials.
\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{30-150i+20i+100}{26}
Do the multiplications in 30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right).
\frac{30+100+\left(-150+20\right)i}{26}
Combine the real and imaginary parts in 30-150i+20i+100.
\frac{130-130i}{26}
Do the additions in 30+100+\left(-150+20\right)i.
5-5i
Divide 130-130i by 26 to get 5-5i.
Re(\frac{\left(30+20i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)})
Multiply both numerator and denominator of \frac{30+20i}{1+5i} by the complex conjugate of the denominator, 1-5i.
Re(\frac{\left(30+20i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(30+20i\right)\left(1-5i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)i^{2}}{26})
Multiply complex numbers 30+20i and 1-5i like you multiply binomials.
Re(\frac{30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{30-150i+20i+100}{26})
Do the multiplications in 30\times 1+30\times \left(-5i\right)+20i\times 1+20\left(-5\right)\left(-1\right).
Re(\frac{30+100+\left(-150+20\right)i}{26})
Combine the real and imaginary parts in 30-150i+20i+100.
Re(\frac{130-130i}{26})
Do the additions in 30+100+\left(-150+20\right)i.
Re(5-5i)
Divide 130-130i by 26 to get 5-5i.
5
The real part of 5-5i is 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}