Solve for b
\left\{\begin{matrix}b=-\frac{mn}{3z-fm}\text{, }&m\neq 0\text{ and }n\neq 0\text{ and }z\neq \frac{fm}{3}\\b\neq 0\text{, }&z=\frac{fm}{3}\text{ and }n=0\text{ and }m\neq 0\end{matrix}\right.
Solve for f
f=\frac{3bz+mn}{bm}
m\neq 0\text{ and }b\neq 0
Share
Copied to clipboard
b\times 3z+mn=fbm
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bm, the least common multiple of m,b.
b\times 3z+mn-fbm=0
Subtract fbm from both sides.
b\times 3z-fbm=-mn
Subtract mn from both sides. Anything subtracted from zero gives its negation.
\left(3z-fm\right)b=-mn
Combine all terms containing b.
\frac{\left(3z-fm\right)b}{3z-fm}=-\frac{mn}{3z-fm}
Divide both sides by 3z-mf.
b=-\frac{mn}{3z-fm}
Dividing by 3z-mf undoes the multiplication by 3z-mf.
b=-\frac{mn}{3z-fm}\text{, }b\neq 0
Variable b cannot be equal to 0.
b\times 3z+mn=fbm
Multiply both sides of the equation by bm, the least common multiple of m,b.
fbm=b\times 3z+mn
Swap sides so that all variable terms are on the left hand side.
bmf=3bz+mn
The equation is in standard form.
\frac{bmf}{bm}=\frac{3bz+mn}{bm}
Divide both sides by bm.
f=\frac{3bz+mn}{bm}
Dividing by bm undoes the multiplication by bm.
f=\frac{n}{b}+\frac{3z}{m}
Divide 3zb+nm by bm.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}