Skip to main content
Solve for y_0 (complex solution)
Tick mark Image
Solve for y_0
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}-3\right)\times 3y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Multiply both sides of the equation by \left(x^{2}-3\right)\left(x^{2}+3\right), the least common multiple of x^{2}+3,x^{2}-3.
\left(3x^{2}-9\right)y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply x^{2}-3 by 3.
3x^{2}y_{0}-9y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply 3x^{2}-9 by y_{0}.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}+18\right)y_{2}
Use the distributive property to multiply x^{2}+3 by 6.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}y_{2}+18y_{2}\right)
Use the distributive property to multiply 6x^{2}+18 by y_{2}.
3x^{2}y_{0}-9y_{0}=-6x^{2}y_{2}-18y_{2}
To find the opposite of 6x^{2}y_{2}+18y_{2}, find the opposite of each term.
\left(3x^{2}-9\right)y_{0}=-6x^{2}y_{2}-18y_{2}
Combine all terms containing y_{0}.
\left(3x^{2}-9\right)y_{0}=-6y_{2}x^{2}-18y_{2}
The equation is in standard form.
\frac{\left(3x^{2}-9\right)y_{0}}{3x^{2}-9}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Divide both sides by 3x^{2}-9.
y_{0}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Dividing by 3x^{2}-9 undoes the multiplication by 3x^{2}-9.
y_{0}=-\frac{2y_{2}\left(x^{2}+3\right)}{x^{2}-3}
Divide -6y_{2}\left(x^{2}+3\right) by 3x^{2}-9.
\left(x^{2}-3\right)\times 3y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Multiply both sides of the equation by \left(x^{2}-3\right)\left(x^{2}+3\right), the least common multiple of x^{2}+3,x^{2}-3.
\left(3x^{2}-9\right)y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply x^{2}-3 by 3.
3x^{2}y_{0}-9y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply 3x^{2}-9 by y_{0}.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}+18\right)y_{2}
Use the distributive property to multiply x^{2}+3 by 6.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}y_{2}+18y_{2}\right)
Use the distributive property to multiply 6x^{2}+18 by y_{2}.
3x^{2}y_{0}-9y_{0}=-6x^{2}y_{2}-18y_{2}
To find the opposite of 6x^{2}y_{2}+18y_{2}, find the opposite of each term.
\left(3x^{2}-9\right)y_{0}=-6x^{2}y_{2}-18y_{2}
Combine all terms containing y_{0}.
\left(3x^{2}-9\right)y_{0}=-6y_{2}x^{2}-18y_{2}
The equation is in standard form.
\frac{\left(3x^{2}-9\right)y_{0}}{3x^{2}-9}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Divide both sides by 3x^{2}-9.
y_{0}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Dividing by 3x^{2}-9 undoes the multiplication by 3x^{2}-9.
y_{0}=-\frac{2y_{2}\left(x^{2}+3\right)}{x^{2}-3}
Divide -6y_{2}\left(x^{2}+3\right) by 3x^{2}-9.