Solve for y_0 (complex solution)
y_{0}=-\frac{2y_{2}\left(x^{2}+3\right)}{x^{2}-3}
x\neq -\sqrt{3}i\text{ and }x\neq \sqrt{3}i\text{ and }x\neq -\sqrt{3}\text{ and }x\neq \sqrt{3}
Solve for y_0
y_{0}=-\frac{2y_{2}\left(x^{2}+3\right)}{x^{2}-3}
|x|\neq \sqrt{3}
Solve for x (complex solution)
\left\{\begin{matrix}x=-i\left(y_{0}+2y_{2}\right)^{-\frac{1}{2}}\sqrt{6y_{2}-3y_{0}}\text{; }x=i\left(y_{0}+2y_{2}\right)^{-\frac{1}{2}}\sqrt{6y_{2}-3y_{0}}\text{, }&y_{0}\neq 0\text{ and }y_{0}\neq -2y_{2}\text{ and }y_{2}\neq 0\\x\in \mathrm{C}\setminus -\sqrt{3}i,\sqrt{3}i,-\sqrt{3},\sqrt{3}\text{, }&y_{0}=0\text{ and }y_{2}=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\sqrt{-\frac{3\left(2y_{2}-y_{0}\right)}{y_{0}+2y_{2}}}\text{; }x=-\sqrt{-\frac{3\left(2y_{2}-y_{0}\right)}{y_{0}+2y_{2}}}\text{, }&\left(y_{2}\neq 0\text{ and }|y_{0}|\geq 2|y_{2}|\text{ and }y_{0}\geq 2y_{2}\text{ and }y_{0}>-2y_{2}\right)\text{ or }\left(y_{2}\neq 0\text{ and }|y_{0}|\geq 2|y_{2}|\text{ and }y_{0}\leq 2y_{2}\text{ and }y_{0}<-2y_{2}\right)\text{ or }\left(y_{2}\neq 0\text{ and }y_{0}=2y_{2}\right)\\x\in \mathrm{R}\setminus \sqrt{3},-\sqrt{3}\text{, }&y_{0}=0\text{ and }y_{2}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x^{2}-3\right)\times 3y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Multiply both sides of the equation by \left(x^{2}-3\right)\left(x^{2}+3\right), the least common multiple of x^{2}+3,x^{2}-3.
\left(3x^{2}-9\right)y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply x^{2}-3 by 3.
3x^{2}y_{0}-9y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply 3x^{2}-9 by y_{0}.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}+18\right)y_{2}
Use the distributive property to multiply x^{2}+3 by 6.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}y_{2}+18y_{2}\right)
Use the distributive property to multiply 6x^{2}+18 by y_{2}.
3x^{2}y_{0}-9y_{0}=-6x^{2}y_{2}-18y_{2}
To find the opposite of 6x^{2}y_{2}+18y_{2}, find the opposite of each term.
\left(3x^{2}-9\right)y_{0}=-6x^{2}y_{2}-18y_{2}
Combine all terms containing y_{0}.
\left(3x^{2}-9\right)y_{0}=-6y_{2}x^{2}-18y_{2}
The equation is in standard form.
\frac{\left(3x^{2}-9\right)y_{0}}{3x^{2}-9}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Divide both sides by 3x^{2}-9.
y_{0}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Dividing by 3x^{2}-9 undoes the multiplication by 3x^{2}-9.
y_{0}=-\frac{2y_{2}\left(x^{2}+3\right)}{x^{2}-3}
Divide -6y_{2}\left(x^{2}+3\right) by 3x^{2}-9.
\left(x^{2}-3\right)\times 3y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Multiply both sides of the equation by \left(x^{2}-3\right)\left(x^{2}+3\right), the least common multiple of x^{2}+3,x^{2}-3.
\left(3x^{2}-9\right)y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply x^{2}-3 by 3.
3x^{2}y_{0}-9y_{0}=-\left(x^{2}+3\right)\times 6y_{2}
Use the distributive property to multiply 3x^{2}-9 by y_{0}.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}+18\right)y_{2}
Use the distributive property to multiply x^{2}+3 by 6.
3x^{2}y_{0}-9y_{0}=-\left(6x^{2}y_{2}+18y_{2}\right)
Use the distributive property to multiply 6x^{2}+18 by y_{2}.
3x^{2}y_{0}-9y_{0}=-6x^{2}y_{2}-18y_{2}
To find the opposite of 6x^{2}y_{2}+18y_{2}, find the opposite of each term.
\left(3x^{2}-9\right)y_{0}=-6x^{2}y_{2}-18y_{2}
Combine all terms containing y_{0}.
\left(3x^{2}-9\right)y_{0}=-6y_{2}x^{2}-18y_{2}
The equation is in standard form.
\frac{\left(3x^{2}-9\right)y_{0}}{3x^{2}-9}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Divide both sides by 3x^{2}-9.
y_{0}=-\frac{6y_{2}\left(x^{2}+3\right)}{3x^{2}-9}
Dividing by 3x^{2}-9 undoes the multiplication by 3x^{2}-9.
y_{0}=-\frac{2y_{2}\left(x^{2}+3\right)}{x^{2}-3}
Divide -6y_{2}\left(x^{2}+3\right) by 3x^{2}-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}