Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(y+5\right)\left(3y-8\right)=\left(5y-2\right)\left(y-2\right)
Variable y cannot be equal to any of the values -5,\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5y-2\right)\left(y+5\right), the least common multiple of 5y-2,y+5.
3y^{2}+7y-40=\left(5y-2\right)\left(y-2\right)
Use the distributive property to multiply y+5 by 3y-8 and combine like terms.
3y^{2}+7y-40=5y^{2}-12y+4
Use the distributive property to multiply 5y-2 by y-2 and combine like terms.
3y^{2}+7y-40-5y^{2}=-12y+4
Subtract 5y^{2} from both sides.
-2y^{2}+7y-40=-12y+4
Combine 3y^{2} and -5y^{2} to get -2y^{2}.
-2y^{2}+7y-40+12y=4
Add 12y to both sides.
-2y^{2}+19y-40=4
Combine 7y and 12y to get 19y.
-2y^{2}+19y-40-4=0
Subtract 4 from both sides.
-2y^{2}+19y-44=0
Subtract 4 from -40 to get -44.
y=\frac{-19±\sqrt{19^{2}-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 19 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-19±\sqrt{361-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
Square 19.
y=\frac{-19±\sqrt{361+8\left(-44\right)}}{2\left(-2\right)}
Multiply -4 times -2.
y=\frac{-19±\sqrt{361-352}}{2\left(-2\right)}
Multiply 8 times -44.
y=\frac{-19±\sqrt{9}}{2\left(-2\right)}
Add 361 to -352.
y=\frac{-19±3}{2\left(-2\right)}
Take the square root of 9.
y=\frac{-19±3}{-4}
Multiply 2 times -2.
y=-\frac{16}{-4}
Now solve the equation y=\frac{-19±3}{-4} when ± is plus. Add -19 to 3.
y=4
Divide -16 by -4.
y=-\frac{22}{-4}
Now solve the equation y=\frac{-19±3}{-4} when ± is minus. Subtract 3 from -19.
y=\frac{11}{2}
Reduce the fraction \frac{-22}{-4} to lowest terms by extracting and canceling out 2.
y=4 y=\frac{11}{2}
The equation is now solved.
\left(y+5\right)\left(3y-8\right)=\left(5y-2\right)\left(y-2\right)
Variable y cannot be equal to any of the values -5,\frac{2}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5y-2\right)\left(y+5\right), the least common multiple of 5y-2,y+5.
3y^{2}+7y-40=\left(5y-2\right)\left(y-2\right)
Use the distributive property to multiply y+5 by 3y-8 and combine like terms.
3y^{2}+7y-40=5y^{2}-12y+4
Use the distributive property to multiply 5y-2 by y-2 and combine like terms.
3y^{2}+7y-40-5y^{2}=-12y+4
Subtract 5y^{2} from both sides.
-2y^{2}+7y-40=-12y+4
Combine 3y^{2} and -5y^{2} to get -2y^{2}.
-2y^{2}+7y-40+12y=4
Add 12y to both sides.
-2y^{2}+19y-40=4
Combine 7y and 12y to get 19y.
-2y^{2}+19y=4+40
Add 40 to both sides.
-2y^{2}+19y=44
Add 4 and 40 to get 44.
\frac{-2y^{2}+19y}{-2}=\frac{44}{-2}
Divide both sides by -2.
y^{2}+\frac{19}{-2}y=\frac{44}{-2}
Dividing by -2 undoes the multiplication by -2.
y^{2}-\frac{19}{2}y=\frac{44}{-2}
Divide 19 by -2.
y^{2}-\frac{19}{2}y=-22
Divide 44 by -2.
y^{2}-\frac{19}{2}y+\left(-\frac{19}{4}\right)^{2}=-22+\left(-\frac{19}{4}\right)^{2}
Divide -\frac{19}{2}, the coefficient of the x term, by 2 to get -\frac{19}{4}. Then add the square of -\frac{19}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{19}{2}y+\frac{361}{16}=-22+\frac{361}{16}
Square -\frac{19}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{19}{2}y+\frac{361}{16}=\frac{9}{16}
Add -22 to \frac{361}{16}.
\left(y-\frac{19}{4}\right)^{2}=\frac{9}{16}
Factor y^{2}-\frac{19}{2}y+\frac{361}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{19}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
y-\frac{19}{4}=\frac{3}{4} y-\frac{19}{4}=-\frac{3}{4}
Simplify.
y=\frac{11}{2} y=4
Add \frac{19}{4} to both sides of the equation.