Solve for y
y=2
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
\left(3y+2\right)\left(3y-3\right)+\left(3y-2\right)\left(6+2y\right)=2\left(3y-2\right)\left(3y+2\right)
Variable y cannot be equal to any of the values -\frac{2}{3},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3y-2\right)\left(3y+2\right), the least common multiple of 3y-2,3y+2.
9y^{2}-3y-6+\left(3y-2\right)\left(6+2y\right)=2\left(3y-2\right)\left(3y+2\right)
Use the distributive property to multiply 3y+2 by 3y-3 and combine like terms.
9y^{2}-3y-6+14y+6y^{2}-12=2\left(3y-2\right)\left(3y+2\right)
Use the distributive property to multiply 3y-2 by 6+2y and combine like terms.
9y^{2}+11y-6+6y^{2}-12=2\left(3y-2\right)\left(3y+2\right)
Combine -3y and 14y to get 11y.
15y^{2}+11y-6-12=2\left(3y-2\right)\left(3y+2\right)
Combine 9y^{2} and 6y^{2} to get 15y^{2}.
15y^{2}+11y-18=2\left(3y-2\right)\left(3y+2\right)
Subtract 12 from -6 to get -18.
15y^{2}+11y-18=\left(6y-4\right)\left(3y+2\right)
Use the distributive property to multiply 2 by 3y-2.
15y^{2}+11y-18=18y^{2}-8
Use the distributive property to multiply 6y-4 by 3y+2 and combine like terms.
15y^{2}+11y-18-18y^{2}=-8
Subtract 18y^{2} from both sides.
-3y^{2}+11y-18=-8
Combine 15y^{2} and -18y^{2} to get -3y^{2}.
-3y^{2}+11y-18+8=0
Add 8 to both sides.
-3y^{2}+11y-10=0
Add -18 and 8 to get -10.
y=\frac{-11±\sqrt{11^{2}-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 11 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-11±\sqrt{121-4\left(-3\right)\left(-10\right)}}{2\left(-3\right)}
Square 11.
y=\frac{-11±\sqrt{121+12\left(-10\right)}}{2\left(-3\right)}
Multiply -4 times -3.
y=\frac{-11±\sqrt{121-120}}{2\left(-3\right)}
Multiply 12 times -10.
y=\frac{-11±\sqrt{1}}{2\left(-3\right)}
Add 121 to -120.
y=\frac{-11±1}{2\left(-3\right)}
Take the square root of 1.
y=\frac{-11±1}{-6}
Multiply 2 times -3.
y=-\frac{10}{-6}
Now solve the equation y=\frac{-11±1}{-6} when ± is plus. Add -11 to 1.
y=\frac{5}{3}
Reduce the fraction \frac{-10}{-6} to lowest terms by extracting and canceling out 2.
y=-\frac{12}{-6}
Now solve the equation y=\frac{-11±1}{-6} when ± is minus. Subtract 1 from -11.
y=2
Divide -12 by -6.
y=\frac{5}{3} y=2
The equation is now solved.
\left(3y+2\right)\left(3y-3\right)+\left(3y-2\right)\left(6+2y\right)=2\left(3y-2\right)\left(3y+2\right)
Variable y cannot be equal to any of the values -\frac{2}{3},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3y-2\right)\left(3y+2\right), the least common multiple of 3y-2,3y+2.
9y^{2}-3y-6+\left(3y-2\right)\left(6+2y\right)=2\left(3y-2\right)\left(3y+2\right)
Use the distributive property to multiply 3y+2 by 3y-3 and combine like terms.
9y^{2}-3y-6+14y+6y^{2}-12=2\left(3y-2\right)\left(3y+2\right)
Use the distributive property to multiply 3y-2 by 6+2y and combine like terms.
9y^{2}+11y-6+6y^{2}-12=2\left(3y-2\right)\left(3y+2\right)
Combine -3y and 14y to get 11y.
15y^{2}+11y-6-12=2\left(3y-2\right)\left(3y+2\right)
Combine 9y^{2} and 6y^{2} to get 15y^{2}.
15y^{2}+11y-18=2\left(3y-2\right)\left(3y+2\right)
Subtract 12 from -6 to get -18.
15y^{2}+11y-18=\left(6y-4\right)\left(3y+2\right)
Use the distributive property to multiply 2 by 3y-2.
15y^{2}+11y-18=18y^{2}-8
Use the distributive property to multiply 6y-4 by 3y+2 and combine like terms.
15y^{2}+11y-18-18y^{2}=-8
Subtract 18y^{2} from both sides.
-3y^{2}+11y-18=-8
Combine 15y^{2} and -18y^{2} to get -3y^{2}.
-3y^{2}+11y=-8+18
Add 18 to both sides.
-3y^{2}+11y=10
Add -8 and 18 to get 10.
\frac{-3y^{2}+11y}{-3}=\frac{10}{-3}
Divide both sides by -3.
y^{2}+\frac{11}{-3}y=\frac{10}{-3}
Dividing by -3 undoes the multiplication by -3.
y^{2}-\frac{11}{3}y=\frac{10}{-3}
Divide 11 by -3.
y^{2}-\frac{11}{3}y=-\frac{10}{3}
Divide 10 by -3.
y^{2}-\frac{11}{3}y+\left(-\frac{11}{6}\right)^{2}=-\frac{10}{3}+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{11}{3}y+\frac{121}{36}=-\frac{10}{3}+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{11}{3}y+\frac{121}{36}=\frac{1}{36}
Add -\frac{10}{3} to \frac{121}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{11}{6}\right)^{2}=\frac{1}{36}
Factor y^{2}-\frac{11}{3}y+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
y-\frac{11}{6}=\frac{1}{6} y-\frac{11}{6}=-\frac{1}{6}
Simplify.
y=2 y=\frac{5}{3}
Add \frac{11}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}