Solve for y
y>\frac{3}{7}
Graph
Share
Copied to clipboard
3y-13>-2\left(5+2y\right)
Multiply both sides of the equation by 12, the least common multiple of 12,-6. Since 12 is positive, the inequality direction remains the same.
3y-13>-10-4y
Use the distributive property to multiply -2 by 5+2y.
3y-13+4y>-10
Add 4y to both sides.
7y-13>-10
Combine 3y and 4y to get 7y.
7y>-10+13
Add 13 to both sides.
7y>3
Add -10 and 13 to get 3.
y>\frac{3}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}