Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3y-1}{y\left(y-2\right)}-\frac{3y-2}{\left(-y+1\right)\left(-y+2\right)}
Factor \left(-y+1\right)\left(-y+2\right).
\frac{\left(3y-1\right)\left(y-1\right)}{y\left(y-2\right)\left(y-1\right)}-\frac{\left(3y-2\right)y}{y\left(y-2\right)\left(y-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(y-2\right) and \left(-y+1\right)\left(-y+2\right) is y\left(y-2\right)\left(y-1\right). Multiply \frac{3y-1}{y\left(y-2\right)} times \frac{y-1}{y-1}. Multiply \frac{3y-2}{\left(-y+1\right)\left(-y+2\right)} times \frac{y}{y}.
\frac{\left(3y-1\right)\left(y-1\right)-\left(3y-2\right)y}{y\left(y-2\right)\left(y-1\right)}
Since \frac{\left(3y-1\right)\left(y-1\right)}{y\left(y-2\right)\left(y-1\right)} and \frac{\left(3y-2\right)y}{y\left(y-2\right)\left(y-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}-3y-y+1-3y^{2}+2y}{y\left(y-2\right)\left(y-1\right)}
Do the multiplications in \left(3y-1\right)\left(y-1\right)-\left(3y-2\right)y.
\frac{-2y+1}{y\left(y-2\right)\left(y-1\right)}
Combine like terms in 3y^{2}-3y-y+1-3y^{2}+2y.
\frac{-2y+1}{y^{3}-3y^{2}+2y}
Expand y\left(y-2\right)\left(y-1\right).
\frac{3y-1}{y\left(y-2\right)}-\frac{3y-2}{\left(-y+1\right)\left(-y+2\right)}
Factor \left(-y+1\right)\left(-y+2\right).
\frac{\left(3y-1\right)\left(y-1\right)}{y\left(y-2\right)\left(y-1\right)}-\frac{\left(3y-2\right)y}{y\left(y-2\right)\left(y-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(y-2\right) and \left(-y+1\right)\left(-y+2\right) is y\left(y-2\right)\left(y-1\right). Multiply \frac{3y-1}{y\left(y-2\right)} times \frac{y-1}{y-1}. Multiply \frac{3y-2}{\left(-y+1\right)\left(-y+2\right)} times \frac{y}{y}.
\frac{\left(3y-1\right)\left(y-1\right)-\left(3y-2\right)y}{y\left(y-2\right)\left(y-1\right)}
Since \frac{\left(3y-1\right)\left(y-1\right)}{y\left(y-2\right)\left(y-1\right)} and \frac{\left(3y-2\right)y}{y\left(y-2\right)\left(y-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}-3y-y+1-3y^{2}+2y}{y\left(y-2\right)\left(y-1\right)}
Do the multiplications in \left(3y-1\right)\left(y-1\right)-\left(3y-2\right)y.
\frac{-2y+1}{y\left(y-2\right)\left(y-1\right)}
Combine like terms in 3y^{2}-3y-y+1-3y^{2}+2y.
\frac{-2y+1}{y^{3}-3y^{2}+2y}
Expand y\left(y-2\right)\left(y-1\right).