Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3y\left(8y-7\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}-\frac{y^{2}\left(8y+9\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(8y+9\right)\left(2y-3\right) and \left(8y-7\right)\left(2y-3\right) is \left(2y-3\right)\left(8y-7\right)\left(8y+9\right). Multiply \frac{3y}{\left(8y+9\right)\left(2y-3\right)} times \frac{8y-7}{8y-7}. Multiply \frac{y^{2}}{\left(8y-7\right)\left(2y-3\right)} times \frac{8y+9}{8y+9}.
\frac{3y\left(8y-7\right)-y^{2}\left(8y+9\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
Since \frac{3y\left(8y-7\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)} and \frac{y^{2}\left(8y+9\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{24y^{2}-21y-8y^{3}-9y^{2}}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
Do the multiplications in 3y\left(8y-7\right)-y^{2}\left(8y+9\right).
\frac{15y^{2}-21y-8y^{3}}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
Combine like terms in 24y^{2}-21y-8y^{3}-9y^{2}.
\frac{15y^{2}-21y-8y^{3}}{128y^{3}-160y^{2}-174y+189}
Expand \left(2y-3\right)\left(8y-7\right)\left(8y+9\right).
\frac{3y\left(8y-7\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}-\frac{y^{2}\left(8y+9\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(8y+9\right)\left(2y-3\right) and \left(8y-7\right)\left(2y-3\right) is \left(2y-3\right)\left(8y-7\right)\left(8y+9\right). Multiply \frac{3y}{\left(8y+9\right)\left(2y-3\right)} times \frac{8y-7}{8y-7}. Multiply \frac{y^{2}}{\left(8y-7\right)\left(2y-3\right)} times \frac{8y+9}{8y+9}.
\frac{3y\left(8y-7\right)-y^{2}\left(8y+9\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
Since \frac{3y\left(8y-7\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)} and \frac{y^{2}\left(8y+9\right)}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{24y^{2}-21y-8y^{3}-9y^{2}}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
Do the multiplications in 3y\left(8y-7\right)-y^{2}\left(8y+9\right).
\frac{15y^{2}-21y-8y^{3}}{\left(2y-3\right)\left(8y-7\right)\left(8y+9\right)}
Combine like terms in 24y^{2}-21y-8y^{3}-9y^{2}.
\frac{15y^{2}-21y-8y^{3}}{128y^{3}-160y^{2}-174y+189}
Expand \left(2y-3\right)\left(8y-7\right)\left(8y+9\right).