Evaluate
\frac{3}{y\left(y+3\right)}
Expand
\frac{3}{y\left(y+3\right)}
Graph
Share
Copied to clipboard
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3}{3y}-\frac{yy}{3y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 3 is 3y. Multiply \frac{3}{y} times \frac{3}{3}. Multiply \frac{y}{3} times \frac{y}{y}.
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3-yy}{3y}}
Since \frac{3\times 3}{3y} and \frac{yy}{3y} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{-2}-y^{-1}}{\frac{9-y^{2}}{3y}}
Do the multiplications in 3\times 3-yy.
\frac{\left(3y^{-2}-y^{-1}\right)\times 3y}{9-y^{2}}
Divide 3y^{-2}-y^{-1} by \frac{9-y^{2}}{3y} by multiplying 3y^{-2}-y^{-1} by the reciprocal of \frac{9-y^{2}}{3y}.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y\left(y-3\right)}{\left(y-3\right)\left(-y-3\right)}
Factor the expressions that are not already factored.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y}{-y-3}
Cancel out y-3 in both numerator and denominator.
\frac{-3\times \frac{1}{y}}{-y-3}
Expand the expression.
\frac{\frac{-3}{y}}{-y-3}
Express -3\times \frac{1}{y} as a single fraction.
\frac{-3}{y\left(-y-3\right)}
Express \frac{\frac{-3}{y}}{-y-3} as a single fraction.
\frac{-3}{-y^{2}-3y}
Use the distributive property to multiply y by -y-3.
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3}{3y}-\frac{yy}{3y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 3 is 3y. Multiply \frac{3}{y} times \frac{3}{3}. Multiply \frac{y}{3} times \frac{y}{y}.
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3-yy}{3y}}
Since \frac{3\times 3}{3y} and \frac{yy}{3y} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{-2}-y^{-1}}{\frac{9-y^{2}}{3y}}
Do the multiplications in 3\times 3-yy.
\frac{\left(3y^{-2}-y^{-1}\right)\times 3y}{9-y^{2}}
Divide 3y^{-2}-y^{-1} by \frac{9-y^{2}}{3y} by multiplying 3y^{-2}-y^{-1} by the reciprocal of \frac{9-y^{2}}{3y}.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y\left(y-3\right)}{\left(y-3\right)\left(-y-3\right)}
Factor the expressions that are not already factored.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y}{-y-3}
Cancel out y-3 in both numerator and denominator.
\frac{-3\times \frac{1}{y}}{-y-3}
Expand the expression.
\frac{\frac{-3}{y}}{-y-3}
Express -3\times \frac{1}{y} as a single fraction.
\frac{-3}{y\left(-y-3\right)}
Express \frac{\frac{-3}{y}}{-y-3} as a single fraction.
\frac{-3}{-y^{2}-3y}
Use the distributive property to multiply y by -y-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}