Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3y^{-2}-y^{-1}}{\frac{3\times 3}{3y}-\frac{yy}{3y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 3 is 3y. Multiply \frac{3}{y} times \frac{3}{3}. Multiply \frac{y}{3} times \frac{y}{y}.
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3-yy}{3y}}
Since \frac{3\times 3}{3y} and \frac{yy}{3y} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{-2}-y^{-1}}{\frac{9-y^{2}}{3y}}
Do the multiplications in 3\times 3-yy.
\frac{\left(3y^{-2}-y^{-1}\right)\times 3y}{9-y^{2}}
Divide 3y^{-2}-y^{-1} by \frac{9-y^{2}}{3y} by multiplying 3y^{-2}-y^{-1} by the reciprocal of \frac{9-y^{2}}{3y}.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y\left(y-3\right)}{\left(y-3\right)\left(-y-3\right)}
Factor the expressions that are not already factored.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y}{-y-3}
Cancel out y-3 in both numerator and denominator.
\frac{-3\times \frac{1}{y}}{-y-3}
Expand the expression.
\frac{\frac{-3}{y}}{-y-3}
Express -3\times \frac{1}{y} as a single fraction.
\frac{-3}{y\left(-y-3\right)}
Express \frac{\frac{-3}{y}}{-y-3} as a single fraction.
\frac{-3}{-y^{2}-3y}
Use the distributive property to multiply y by -y-3.
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3}{3y}-\frac{yy}{3y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 3 is 3y. Multiply \frac{3}{y} times \frac{3}{3}. Multiply \frac{y}{3} times \frac{y}{y}.
\frac{3y^{-2}-y^{-1}}{\frac{3\times 3-yy}{3y}}
Since \frac{3\times 3}{3y} and \frac{yy}{3y} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{-2}-y^{-1}}{\frac{9-y^{2}}{3y}}
Do the multiplications in 3\times 3-yy.
\frac{\left(3y^{-2}-y^{-1}\right)\times 3y}{9-y^{2}}
Divide 3y^{-2}-y^{-1} by \frac{9-y^{2}}{3y} by multiplying 3y^{-2}-y^{-1} by the reciprocal of \frac{9-y^{2}}{3y}.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y\left(y-3\right)}{\left(y-3\right)\left(-y-3\right)}
Factor the expressions that are not already factored.
\frac{-3\times \left(\frac{1}{y}\right)^{2}y}{-y-3}
Cancel out y-3 in both numerator and denominator.
\frac{-3\times \frac{1}{y}}{-y-3}
Expand the expression.
\frac{\frac{-3}{y}}{-y-3}
Express -3\times \frac{1}{y} as a single fraction.
\frac{-3}{y\left(-y-3\right)}
Express \frac{\frac{-3}{y}}{-y-3} as a single fraction.
\frac{-3}{-y^{2}-3y}
Use the distributive property to multiply y by -y-3.