Evaluate
\frac{5\left(y+1\right)^{2}}{36\left(y+2\right)}
Expand
\frac{5\left(y^{2}+2y+1\right)}{36\left(y+2\right)}
Graph
Share
Copied to clipboard
\frac{\left(3y+3\right)\left(5y+5\right)}{\left(6y+12\right)\times 18}
Divide \frac{3y+3}{6y+12} by \frac{18}{5y+5} by multiplying \frac{3y+3}{6y+12} by the reciprocal of \frac{18}{5y+5}.
\frac{3\times 5\left(y+1\right)^{2}}{6\times 18\left(y+2\right)}
Factor the expressions that are not already factored.
\frac{5\left(y+1\right)^{2}}{2\times 18\left(y+2\right)}
Cancel out 3 in both numerator and denominator.
\frac{5y^{2}+10y+5}{36y+72}
Expand the expression.
\frac{\left(3y+3\right)\left(5y+5\right)}{\left(6y+12\right)\times 18}
Divide \frac{3y+3}{6y+12} by \frac{18}{5y+5} by multiplying \frac{3y+3}{6y+12} by the reciprocal of \frac{18}{5y+5}.
\frac{3\times 5\left(y+1\right)^{2}}{6\times 18\left(y+2\right)}
Factor the expressions that are not already factored.
\frac{5\left(y+1\right)^{2}}{2\times 18\left(y+2\right)}
Cancel out 3 in both numerator and denominator.
\frac{5y^{2}+10y+5}{36y+72}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}