Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
Variable x cannot be equal to any of the values -5,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+5\right), the least common multiple of x-2,x+5.
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
Use the distributive property to multiply x+5 by 3x-8 and combine like terms.
3x^{2}+7x-40=5x^{2}-12x+4
Use the distributive property to multiply x-2 by 5x-2 and combine like terms.
3x^{2}+7x-40-5x^{2}=-12x+4
Subtract 5x^{2} from both sides.
-2x^{2}+7x-40=-12x+4
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}+7x-40+12x=4
Add 12x to both sides.
-2x^{2}+19x-40=4
Combine 7x and 12x to get 19x.
-2x^{2}+19x-40-4=0
Subtract 4 from both sides.
-2x^{2}+19x-44=0
Subtract 4 from -40 to get -44.
x=\frac{-19±\sqrt{19^{2}-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 19 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
Square 19.
x=\frac{-19±\sqrt{361+8\left(-44\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-19±\sqrt{361-352}}{2\left(-2\right)}
Multiply 8 times -44.
x=\frac{-19±\sqrt{9}}{2\left(-2\right)}
Add 361 to -352.
x=\frac{-19±3}{2\left(-2\right)}
Take the square root of 9.
x=\frac{-19±3}{-4}
Multiply 2 times -2.
x=-\frac{16}{-4}
Now solve the equation x=\frac{-19±3}{-4} when ± is plus. Add -19 to 3.
x=4
Divide -16 by -4.
x=-\frac{22}{-4}
Now solve the equation x=\frac{-19±3}{-4} when ± is minus. Subtract 3 from -19.
x=\frac{11}{2}
Reduce the fraction \frac{-22}{-4} to lowest terms by extracting and canceling out 2.
x=4 x=\frac{11}{2}
The equation is now solved.
\left(x+5\right)\left(3x-8\right)=\left(x-2\right)\left(5x-2\right)
Variable x cannot be equal to any of the values -5,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+5\right), the least common multiple of x-2,x+5.
3x^{2}+7x-40=\left(x-2\right)\left(5x-2\right)
Use the distributive property to multiply x+5 by 3x-8 and combine like terms.
3x^{2}+7x-40=5x^{2}-12x+4
Use the distributive property to multiply x-2 by 5x-2 and combine like terms.
3x^{2}+7x-40-5x^{2}=-12x+4
Subtract 5x^{2} from both sides.
-2x^{2}+7x-40=-12x+4
Combine 3x^{2} and -5x^{2} to get -2x^{2}.
-2x^{2}+7x-40+12x=4
Add 12x to both sides.
-2x^{2}+19x-40=4
Combine 7x and 12x to get 19x.
-2x^{2}+19x=4+40
Add 40 to both sides.
-2x^{2}+19x=44
Add 4 and 40 to get 44.
\frac{-2x^{2}+19x}{-2}=\frac{44}{-2}
Divide both sides by -2.
x^{2}+\frac{19}{-2}x=\frac{44}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{19}{2}x=\frac{44}{-2}
Divide 19 by -2.
x^{2}-\frac{19}{2}x=-22
Divide 44 by -2.
x^{2}-\frac{19}{2}x+\left(-\frac{19}{4}\right)^{2}=-22+\left(-\frac{19}{4}\right)^{2}
Divide -\frac{19}{2}, the coefficient of the x term, by 2 to get -\frac{19}{4}. Then add the square of -\frac{19}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{2}x+\frac{361}{16}=-22+\frac{361}{16}
Square -\frac{19}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{2}x+\frac{361}{16}=\frac{9}{16}
Add -22 to \frac{361}{16}.
\left(x-\frac{19}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{19}{2}x+\frac{361}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{19}{4}=\frac{3}{4} x-\frac{19}{4}=-\frac{3}{4}
Simplify.
x=\frac{11}{2} x=4
Add \frac{19}{4} to both sides of the equation.