Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
Variable x cannot be equal to any of the values -5,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+5\right), the least common multiple of x+5,x+2.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
Use the distributive property to multiply x+2 by 3x-7 and combine like terms.
3x^{2}-x-14=x^{2}+2x-15
Use the distributive property to multiply x+5 by x-3 and combine like terms.
3x^{2}-x-14-x^{2}=2x-15
Subtract x^{2} from both sides.
2x^{2}-x-14=2x-15
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-x-14-2x=-15
Subtract 2x from both sides.
2x^{2}-3x-14=-15
Combine -x and -2x to get -3x.
2x^{2}-3x-14+15=0
Add 15 to both sides.
2x^{2}-3x+1=0
Add -14 and 15 to get 1.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times 2}
Add 9 to -8.
x=\frac{-\left(-3\right)±1}{2\times 2}
Take the square root of 1.
x=\frac{3±1}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±1}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{3±1}{4} when ± is plus. Add 3 to 1.
x=1
Divide 4 by 4.
x=\frac{2}{4}
Now solve the equation x=\frac{3±1}{4} when ± is minus. Subtract 1 from 3.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x=1 x=\frac{1}{2}
The equation is now solved.
\left(x+2\right)\left(3x-7\right)=\left(x+5\right)\left(x-3\right)
Variable x cannot be equal to any of the values -5,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+5\right), the least common multiple of x+5,x+2.
3x^{2}-x-14=\left(x+5\right)\left(x-3\right)
Use the distributive property to multiply x+2 by 3x-7 and combine like terms.
3x^{2}-x-14=x^{2}+2x-15
Use the distributive property to multiply x+5 by x-3 and combine like terms.
3x^{2}-x-14-x^{2}=2x-15
Subtract x^{2} from both sides.
2x^{2}-x-14=2x-15
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-x-14-2x=-15
Subtract 2x from both sides.
2x^{2}-3x-14=-15
Combine -x and -2x to get -3x.
2x^{2}-3x=-15+14
Add 14 to both sides.
2x^{2}-3x=-1
Add -15 and 14 to get -1.
\frac{2x^{2}-3x}{2}=-\frac{1}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Simplify.
x=1 x=\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.