Solve for x
x>\frac{9}{13}
Graph
Share
Copied to clipboard
3x-7-2\left(4-5x\right)>-6
Multiply both sides of the equation by 6, the least common multiple of 6,3. Since 6 is positive, the inequality direction remains the same.
3x-7-8+10x>-6
Use the distributive property to multiply -2 by 4-5x.
3x-15+10x>-6
Subtract 8 from -7 to get -15.
13x-15>-6
Combine 3x and 10x to get 13x.
13x>-6+15
Add 15 to both sides.
13x>9
Add -6 and 15 to get 9.
x>\frac{9}{13}
Divide both sides by 13. Since 13 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}