Solve for k
k=2\left(x-2\right)
x\neq 2
Solve for x
x=\frac{k+4}{2}
k\neq 0
Graph
Share
Copied to clipboard
6\left(3x-6\right)+k\left(2x-9\right)=2kx
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6k, the least common multiple of k,6,3.
18x-36+k\left(2x-9\right)=2kx
Use the distributive property to multiply 6 by 3x-6.
18x-36+2kx-9k=2kx
Use the distributive property to multiply k by 2x-9.
18x-36+2kx-9k-2kx=0
Subtract 2kx from both sides.
18x-36-9k=0
Combine 2kx and -2kx to get 0.
-36-9k=-18x
Subtract 18x from both sides. Anything subtracted from zero gives its negation.
-9k=-18x+36
Add 36 to both sides.
-9k=36-18x
The equation is in standard form.
\frac{-9k}{-9}=\frac{36-18x}{-9}
Divide both sides by -9.
k=\frac{36-18x}{-9}
Dividing by -9 undoes the multiplication by -9.
k=2x-4
Divide -18x+36 by -9.
k=2x-4\text{, }k\neq 0
Variable k cannot be equal to 0.
6\left(3x-6\right)+k\left(2x-9\right)=2kx
Multiply both sides of the equation by 6k, the least common multiple of k,6,3.
18x-36+k\left(2x-9\right)=2kx
Use the distributive property to multiply 6 by 3x-6.
18x-36+2kx-9k=2kx
Use the distributive property to multiply k by 2x-9.
18x-36+2kx-9k-2kx=0
Subtract 2kx from both sides.
18x-36-9k=0
Combine 2kx and -2kx to get 0.
18x-9k=36
Add 36 to both sides. Anything plus zero gives itself.
18x=36+9k
Add 9k to both sides.
18x=9k+36
The equation is in standard form.
\frac{18x}{18}=\frac{9k+36}{18}
Divide both sides by 18.
x=\frac{9k+36}{18}
Dividing by 18 undoes the multiplication by 18.
x=\frac{k}{2}+2
Divide 36+9k by 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}