Solve for x
x = \frac{150}{7} = 21\frac{3}{7} \approx 21.428571429
Graph
Share
Copied to clipboard
3\left(3x-6\right)=16x-168
Multiply both sides of the equation by 24, the least common multiple of 8,3.
9x-18=16x-168
Use the distributive property to multiply 3 by 3x-6.
9x-18-16x=-168
Subtract 16x from both sides.
-7x-18=-168
Combine 9x and -16x to get -7x.
-7x=-168+18
Add 18 to both sides.
-7x=-150
Add -168 and 18 to get -150.
x=\frac{-150}{-7}
Divide both sides by -7.
x=\frac{150}{7}
Fraction \frac{-150}{-7} can be simplified to \frac{150}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}