Solve for x
x\geq -\frac{11}{21}
Graph
Share
Copied to clipboard
4\left(3x-5\right)\leq 6\left(\left(2x+1\right)^{2}-2\right)-3\left(x\left(8x-3\right)+1\right)
Multiply both sides of the equation by 12, the least common multiple of 3,2,4. Since 12 is positive, the inequality direction remains the same.
12x-20\leq 6\left(\left(2x+1\right)^{2}-2\right)-3\left(x\left(8x-3\right)+1\right)
Use the distributive property to multiply 4 by 3x-5.
12x-20\leq 6\left(4x^{2}+4x+1-2\right)-3\left(x\left(8x-3\right)+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
12x-20\leq 6\left(4x^{2}+4x-1\right)-3\left(x\left(8x-3\right)+1\right)
Subtract 2 from 1 to get -1.
12x-20\leq 24x^{2}+24x-6-3\left(x\left(8x-3\right)+1\right)
Use the distributive property to multiply 6 by 4x^{2}+4x-1.
12x-20\leq 24x^{2}+24x-6-3\left(8x^{2}-3x+1\right)
Use the distributive property to multiply x by 8x-3.
12x-20\leq 24x^{2}+24x-6-24x^{2}+9x-3
Use the distributive property to multiply -3 by 8x^{2}-3x+1.
12x-20\leq 24x-6+9x-3
Combine 24x^{2} and -24x^{2} to get 0.
12x-20\leq 33x-6-3
Combine 24x and 9x to get 33x.
12x-20\leq 33x-9
Subtract 3 from -6 to get -9.
12x-20-33x\leq -9
Subtract 33x from both sides.
-21x-20\leq -9
Combine 12x and -33x to get -21x.
-21x\leq -9+20
Add 20 to both sides.
-21x\leq 11
Add -9 and 20 to get 11.
x\geq -\frac{11}{21}
Divide both sides by -21. Since -21 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}