Solve for x
x=1
x=3
Graph
Share
Copied to clipboard
x\left(3x-5\right)=\left(2x-3\right)\left(1+x\right)
Variable x cannot be equal to any of the values 0,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-3\right), the least common multiple of 2x-3,x.
3x^{2}-5x=\left(2x-3\right)\left(1+x\right)
Use the distributive property to multiply x by 3x-5.
3x^{2}-5x=-x+2x^{2}-3
Use the distributive property to multiply 2x-3 by 1+x and combine like terms.
3x^{2}-5x+x=2x^{2}-3
Add x to both sides.
3x^{2}-4x=2x^{2}-3
Combine -5x and x to get -4x.
3x^{2}-4x-2x^{2}=-3
Subtract 2x^{2} from both sides.
x^{2}-4x=-3
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-4x+3=0
Add 3 to both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Add 16 to -12.
x=\frac{-\left(-4\right)±2}{2}
Take the square root of 4.
x=\frac{4±2}{2}
The opposite of -4 is 4.
x=\frac{6}{2}
Now solve the equation x=\frac{4±2}{2} when ± is plus. Add 4 to 2.
x=3
Divide 6 by 2.
x=\frac{2}{2}
Now solve the equation x=\frac{4±2}{2} when ± is minus. Subtract 2 from 4.
x=1
Divide 2 by 2.
x=3 x=1
The equation is now solved.
x\left(3x-5\right)=\left(2x-3\right)\left(1+x\right)
Variable x cannot be equal to any of the values 0,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by x\left(2x-3\right), the least common multiple of 2x-3,x.
3x^{2}-5x=\left(2x-3\right)\left(1+x\right)
Use the distributive property to multiply x by 3x-5.
3x^{2}-5x=-x+2x^{2}-3
Use the distributive property to multiply 2x-3 by 1+x and combine like terms.
3x^{2}-5x+x=2x^{2}-3
Add x to both sides.
3x^{2}-4x=2x^{2}-3
Combine -5x and x to get -4x.
3x^{2}-4x-2x^{2}=-3
Subtract 2x^{2} from both sides.
x^{2}-4x=-3
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}