Evaluate
\frac{11x}{20}-\frac{41y}{30}
Expand
\frac{11x}{20}-\frac{41y}{30}
Share
Copied to clipboard
\frac{2\left(3x-4y\right)}{12}+\frac{3\left(x-2y\right)}{12}-\frac{x+y}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 4 is 12. Multiply \frac{3x-4y}{6} times \frac{2}{2}. Multiply \frac{x-2y}{4} times \frac{3}{3}.
\frac{2\left(3x-4y\right)+3\left(x-2y\right)}{12}-\frac{x+y}{5}
Since \frac{2\left(3x-4y\right)}{12} and \frac{3\left(x-2y\right)}{12} have the same denominator, add them by adding their numerators.
\frac{6x-8y+3x-6y}{12}-\frac{x+y}{5}
Do the multiplications in 2\left(3x-4y\right)+3\left(x-2y\right).
\frac{9x-14y}{12}-\frac{x+y}{5}
Combine like terms in 6x-8y+3x-6y.
\frac{5\left(9x-14y\right)}{60}-\frac{12\left(x+y\right)}{60}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12 and 5 is 60. Multiply \frac{9x-14y}{12} times \frac{5}{5}. Multiply \frac{x+y}{5} times \frac{12}{12}.
\frac{5\left(9x-14y\right)-12\left(x+y\right)}{60}
Since \frac{5\left(9x-14y\right)}{60} and \frac{12\left(x+y\right)}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{45x-70y-12x-12y}{60}
Do the multiplications in 5\left(9x-14y\right)-12\left(x+y\right).
\frac{33x-82y}{60}
Combine like terms in 45x-70y-12x-12y.
\frac{2\left(3x-4y\right)}{12}+\frac{3\left(x-2y\right)}{12}-\frac{x+y}{5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 4 is 12. Multiply \frac{3x-4y}{6} times \frac{2}{2}. Multiply \frac{x-2y}{4} times \frac{3}{3}.
\frac{2\left(3x-4y\right)+3\left(x-2y\right)}{12}-\frac{x+y}{5}
Since \frac{2\left(3x-4y\right)}{12} and \frac{3\left(x-2y\right)}{12} have the same denominator, add them by adding their numerators.
\frac{6x-8y+3x-6y}{12}-\frac{x+y}{5}
Do the multiplications in 2\left(3x-4y\right)+3\left(x-2y\right).
\frac{9x-14y}{12}-\frac{x+y}{5}
Combine like terms in 6x-8y+3x-6y.
\frac{5\left(9x-14y\right)}{60}-\frac{12\left(x+y\right)}{60}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12 and 5 is 60. Multiply \frac{9x-14y}{12} times \frac{5}{5}. Multiply \frac{x+y}{5} times \frac{12}{12}.
\frac{5\left(9x-14y\right)-12\left(x+y\right)}{60}
Since \frac{5\left(9x-14y\right)}{60} and \frac{12\left(x+y\right)}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{45x-70y-12x-12y}{60}
Do the multiplications in 5\left(9x-14y\right)-12\left(x+y\right).
\frac{33x-82y}{60}
Combine like terms in 45x-70y-12x-12y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}