Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-4=x\times 4-7xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3x-4=x\times 4-7x^{2}
Multiply x and x to get x^{2}.
3x-4-x\times 4=-7x^{2}
Subtract x\times 4 from both sides.
-x-4=-7x^{2}
Combine 3x and -x\times 4 to get -x.
-x-4+7x^{2}=0
Add 7x^{2} to both sides.
7x^{2}-x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 7\left(-4\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-28\left(-4\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-1\right)±\sqrt{1+112}}{2\times 7}
Multiply -28 times -4.
x=\frac{-\left(-1\right)±\sqrt{113}}{2\times 7}
Add 1 to 112.
x=\frac{1±\sqrt{113}}{2\times 7}
The opposite of -1 is 1.
x=\frac{1±\sqrt{113}}{14}
Multiply 2 times 7.
x=\frac{\sqrt{113}+1}{14}
Now solve the equation x=\frac{1±\sqrt{113}}{14} when ± is plus. Add 1 to \sqrt{113}.
x=\frac{1-\sqrt{113}}{14}
Now solve the equation x=\frac{1±\sqrt{113}}{14} when ± is minus. Subtract \sqrt{113} from 1.
x=\frac{\sqrt{113}+1}{14} x=\frac{1-\sqrt{113}}{14}
The equation is now solved.
3x-4=x\times 4-7xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3x-4=x\times 4-7x^{2}
Multiply x and x to get x^{2}.
3x-4-x\times 4=-7x^{2}
Subtract x\times 4 from both sides.
-x-4=-7x^{2}
Combine 3x and -x\times 4 to get -x.
-x-4+7x^{2}=0
Add 7x^{2} to both sides.
-x+7x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
7x^{2}-x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7x^{2}-x}{7}=\frac{4}{7}
Divide both sides by 7.
x^{2}-\frac{1}{7}x=\frac{4}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{1}{7}x+\left(-\frac{1}{14}\right)^{2}=\frac{4}{7}+\left(-\frac{1}{14}\right)^{2}
Divide -\frac{1}{7}, the coefficient of the x term, by 2 to get -\frac{1}{14}. Then add the square of -\frac{1}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{7}x+\frac{1}{196}=\frac{4}{7}+\frac{1}{196}
Square -\frac{1}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{7}x+\frac{1}{196}=\frac{113}{196}
Add \frac{4}{7} to \frac{1}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{14}\right)^{2}=\frac{113}{196}
Factor x^{2}-\frac{1}{7}x+\frac{1}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{14}\right)^{2}}=\sqrt{\frac{113}{196}}
Take the square root of both sides of the equation.
x-\frac{1}{14}=\frac{\sqrt{113}}{14} x-\frac{1}{14}=-\frac{\sqrt{113}}{14}
Simplify.
x=\frac{\sqrt{113}+1}{14} x=\frac{1-\sqrt{113}}{14}
Add \frac{1}{14} to both sides of the equation.