Solve for x
x\leq \frac{23}{11}
Graph
Share
Copied to clipboard
6\left(3x-4\right)-3\left(2-\frac{1}{3}\right)\left(3x-3\right)\leq -30x+60
Multiply both sides of the equation by 30, the least common multiple of 5,3,10. Since 30 is positive, the inequality direction remains the same.
18x-24-3\left(2-\frac{1}{3}\right)\left(3x-3\right)\leq -30x+60
Use the distributive property to multiply 6 by 3x-4.
18x-24-3\left(\frac{6}{3}-\frac{1}{3}\right)\left(3x-3\right)\leq -30x+60
Convert 2 to fraction \frac{6}{3}.
18x-24-3\times \frac{6-1}{3}\left(3x-3\right)\leq -30x+60
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
18x-24-3\times \frac{5}{3}\left(3x-3\right)\leq -30x+60
Subtract 1 from 6 to get 5.
18x-24-5\left(3x-3\right)\leq -30x+60
Cancel out 3 and 3.
18x-24-15x+15\leq -30x+60
Use the distributive property to multiply -5 by 3x-3.
3x-24+15\leq -30x+60
Combine 18x and -15x to get 3x.
3x-9\leq -30x+60
Add -24 and 15 to get -9.
3x-9+30x\leq 60
Add 30x to both sides.
33x-9\leq 60
Combine 3x and 30x to get 33x.
33x\leq 60+9
Add 9 to both sides.
33x\leq 69
Add 60 and 9 to get 69.
x\leq \frac{69}{33}
Divide both sides by 33. Since 33 is positive, the inequality direction remains the same.
x\leq \frac{23}{11}
Reduce the fraction \frac{69}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}