Evaluate
-\frac{1}{4}=-0.25
Factor
-\frac{1}{4} = -0.25
Graph
Share
Copied to clipboard
\frac{3x-4}{-4x}+\frac{2\left(-x+2\right)}{-4x}
Factor the expressions that are not already factored in \frac{-2x+4}{-4x}.
\frac{3x-4}{-4x}+\frac{-x+2}{-2x}
Cancel out 2 in both numerator and denominator.
\frac{-\left(3x-4\right)}{4x}+\frac{-2\left(-x+2\right)}{4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of -4x and -2x is 4x. Multiply \frac{3x-4}{-4x} times \frac{-1}{-1}. Multiply \frac{-x+2}{-2x} times \frac{-2}{-2}.
\frac{-\left(3x-4\right)-2\left(-x+2\right)}{4x}
Since \frac{-\left(3x-4\right)}{4x} and \frac{-2\left(-x+2\right)}{4x} have the same denominator, add them by adding their numerators.
\frac{-3x+4+2x-4}{4x}
Do the multiplications in -\left(3x-4\right)-2\left(-x+2\right).
\frac{-x}{4x}
Combine like terms in -3x+4+2x-4.
\frac{-1}{4}
Cancel out x in both numerator and denominator.
-\frac{1}{4}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}