Solve for x
x<\frac{13}{23}
Graph
Share
Copied to clipboard
3x-3-2\left(1+2x\right)<8\left(1-3x\right)
Multiply both sides of the equation by 4, the least common multiple of 4,2. Since 4 is positive, the inequality direction remains the same.
3x-3-2-4x<8\left(1-3x\right)
Use the distributive property to multiply -2 by 1+2x.
3x-5-4x<8\left(1-3x\right)
Subtract 2 from -3 to get -5.
-x-5<8\left(1-3x\right)
Combine 3x and -4x to get -x.
-x-5<8-24x
Use the distributive property to multiply 8 by 1-3x.
-x-5+24x<8
Add 24x to both sides.
23x-5<8
Combine -x and 24x to get 23x.
23x<8+5
Add 5 to both sides.
23x<13
Add 8 and 5 to get 13.
x<\frac{13}{23}
Divide both sides by 23. Since 23 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}