Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(3x-2y\right)}{15}-\frac{3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{3x-2y}{3} times \frac{5}{5}. Multiply \frac{4y+2x}{5} times \frac{3}{3}.
\frac{5\left(3x-2y\right)-3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Since \frac{5\left(3x-2y\right)}{15} and \frac{3\left(4y+2x\right)}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-10y-12y-6x}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Do the multiplications in 5\left(3x-2y\right)-3\left(4y+2x\right).
\frac{9x-22y}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Combine like terms in 15x-10y-12y-6x.
\frac{9x-22y+23y-9x}{15}-\frac{4}{15}
Since \frac{9x-22y}{15} and \frac{23y-9x}{15} have the same denominator, add them by adding their numerators.
\frac{y}{15}-\frac{4}{15}
Combine like terms in 9x-22y+23y-9x.
\frac{y-4}{15}
Since \frac{y}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{5\left(3x-2y\right)}{15}-\frac{3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{3x-2y}{3} times \frac{5}{5}. Multiply \frac{4y+2x}{5} times \frac{3}{3}.
\frac{5\left(3x-2y\right)-3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Since \frac{5\left(3x-2y\right)}{15} and \frac{3\left(4y+2x\right)}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-10y-12y-6x}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Do the multiplications in 5\left(3x-2y\right)-3\left(4y+2x\right).
\frac{9x-22y}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Combine like terms in 15x-10y-12y-6x.
\frac{9x-22y+23y-9x}{15}-\frac{4}{15}
Since \frac{9x-22y}{15} and \frac{23y-9x}{15} have the same denominator, add them by adding their numerators.
\frac{y}{15}-\frac{4}{15}
Combine like terms in 9x-22y+23y-9x.
\frac{y-4}{15}
Since \frac{y}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.