Evaluate
\frac{y-4}{15}
Expand
\frac{y-4}{15}
Share
Copied to clipboard
\frac{5\left(3x-2y\right)}{15}-\frac{3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{3x-2y}{3} times \frac{5}{5}. Multiply \frac{4y+2x}{5} times \frac{3}{3}.
\frac{5\left(3x-2y\right)-3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Since \frac{5\left(3x-2y\right)}{15} and \frac{3\left(4y+2x\right)}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-10y-12y-6x}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Do the multiplications in 5\left(3x-2y\right)-3\left(4y+2x\right).
\frac{9x-22y}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Combine like terms in 15x-10y-12y-6x.
\frac{9x-22y+23y-9x}{15}-\frac{4}{15}
Since \frac{9x-22y}{15} and \frac{23y-9x}{15} have the same denominator, add them by adding their numerators.
\frac{y}{15}-\frac{4}{15}
Combine like terms in 9x-22y+23y-9x.
\frac{y-4}{15}
Since \frac{y}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{5\left(3x-2y\right)}{15}-\frac{3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{3x-2y}{3} times \frac{5}{5}. Multiply \frac{4y+2x}{5} times \frac{3}{3}.
\frac{5\left(3x-2y\right)-3\left(4y+2x\right)}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Since \frac{5\left(3x-2y\right)}{15} and \frac{3\left(4y+2x\right)}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-10y-12y-6x}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Do the multiplications in 5\left(3x-2y\right)-3\left(4y+2x\right).
\frac{9x-22y}{15}+\frac{23y-9x}{15}-\frac{4}{15}
Combine like terms in 15x-10y-12y-6x.
\frac{9x-22y+23y-9x}{15}-\frac{4}{15}
Since \frac{9x-22y}{15} and \frac{23y-9x}{15} have the same denominator, add them by adding their numerators.
\frac{y}{15}-\frac{4}{15}
Combine like terms in 9x-22y+23y-9x.
\frac{y-4}{15}
Since \frac{y}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}