Solve for m
m=\frac{x-4}{5}
x\neq -1
Solve for x
x=5m+4
m\neq -1
Graph
Share
Copied to clipboard
\left(m+1\right)\left(3x-2\right)=\left(m+1\right)\left(x+1\right)\times 2+\left(x+1\right)m
Variable m cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(m+1\right)\left(x+1\right), the least common multiple of x+1,m+1.
3mx-2m+3x-2=\left(m+1\right)\left(x+1\right)\times 2+\left(x+1\right)m
Use the distributive property to multiply m+1 by 3x-2.
3mx-2m+3x-2=\left(mx+m+x+1\right)\times 2+\left(x+1\right)m
Use the distributive property to multiply m+1 by x+1.
3mx-2m+3x-2=2mx+2m+2x+2+\left(x+1\right)m
Use the distributive property to multiply mx+m+x+1 by 2.
3mx-2m+3x-2=2mx+2m+2x+2+xm+m
Use the distributive property to multiply x+1 by m.
3mx-2m+3x-2=3mx+2m+2x+2+m
Combine 2mx and xm to get 3mx.
3mx-2m+3x-2=3mx+3m+2x+2
Combine 2m and m to get 3m.
3mx-2m+3x-2-3mx=3m+2x+2
Subtract 3mx from both sides.
-2m+3x-2=3m+2x+2
Combine 3mx and -3mx to get 0.
-2m+3x-2-3m=2x+2
Subtract 3m from both sides.
-5m+3x-2=2x+2
Combine -2m and -3m to get -5m.
-5m-2=2x+2-3x
Subtract 3x from both sides.
-5m-2=-x+2
Combine 2x and -3x to get -x.
-5m=-x+2+2
Add 2 to both sides.
-5m=-x+4
Add 2 and 2 to get 4.
-5m=4-x
The equation is in standard form.
\frac{-5m}{-5}=\frac{4-x}{-5}
Divide both sides by -5.
m=\frac{4-x}{-5}
Dividing by -5 undoes the multiplication by -5.
m=\frac{x-4}{5}
Divide -x+4 by -5.
m=\frac{x-4}{5}\text{, }m\neq -1
Variable m cannot be equal to -1.
\left(m+1\right)\left(3x-2\right)=\left(m+1\right)\left(x+1\right)\times 2+\left(x+1\right)m
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(m+1\right)\left(x+1\right), the least common multiple of x+1,m+1.
3mx-2m+3x-2=\left(m+1\right)\left(x+1\right)\times 2+\left(x+1\right)m
Use the distributive property to multiply m+1 by 3x-2.
3mx-2m+3x-2=\left(mx+m+x+1\right)\times 2+\left(x+1\right)m
Use the distributive property to multiply m+1 by x+1.
3mx-2m+3x-2=2mx+2m+2x+2+\left(x+1\right)m
Use the distributive property to multiply mx+m+x+1 by 2.
3mx-2m+3x-2=2mx+2m+2x+2+xm+m
Use the distributive property to multiply x+1 by m.
3mx-2m+3x-2=3mx+2m+2x+2+m
Combine 2mx and xm to get 3mx.
3mx-2m+3x-2=3mx+3m+2x+2
Combine 2m and m to get 3m.
3mx-2m+3x-2-3mx=3m+2x+2
Subtract 3mx from both sides.
-2m+3x-2=3m+2x+2
Combine 3mx and -3mx to get 0.
-2m+3x-2-2x=3m+2
Subtract 2x from both sides.
-2m+x-2=3m+2
Combine 3x and -2x to get x.
x-2=3m+2+2m
Add 2m to both sides.
x-2=5m+2
Combine 3m and 2m to get 5m.
x=5m+2+2
Add 2 to both sides.
x=5m+4
Add 2 and 2 to get 4.
x=5m+4\text{, }x\neq -1
Variable x cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}