Solve for x
x\geq \frac{2}{3}
Graph
Share
Copied to clipboard
5\left(3x-2\right)+8\left(3x+3\right)\geq 160-10\left(15x+2\right)
Multiply both sides of the equation by 40, the least common multiple of 8,5,4. Since 40 is positive, the inequality direction remains the same.
15x-10+8\left(3x+3\right)\geq 160-10\left(15x+2\right)
Use the distributive property to multiply 5 by 3x-2.
15x-10+24x+24\geq 160-10\left(15x+2\right)
Use the distributive property to multiply 8 by 3x+3.
39x-10+24\geq 160-10\left(15x+2\right)
Combine 15x and 24x to get 39x.
39x+14\geq 160-10\left(15x+2\right)
Add -10 and 24 to get 14.
39x+14\geq 160-150x-20
Use the distributive property to multiply -10 by 15x+2.
39x+14\geq 140-150x
Subtract 20 from 160 to get 140.
39x+14+150x\geq 140
Add 150x to both sides.
189x+14\geq 140
Combine 39x and 150x to get 189x.
189x\geq 140-14
Subtract 14 from both sides.
189x\geq 126
Subtract 14 from 140 to get 126.
x\geq \frac{126}{189}
Divide both sides by 189. Since 189 is positive, the inequality direction remains the same.
x\geq \frac{2}{3}
Reduce the fraction \frac{126}{189} to lowest terms by extracting and canceling out 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}