Evaluate
\frac{2}{3x-1}
Expand
\frac{2}{3x-1}
Graph
Share
Copied to clipboard
\frac{3x-2}{\left(x-3\right)\left(2x+1\right)}-\frac{x-2}{\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Factor 2x^{2}-5x-3. Factor 6x^{2}+x-1.
\frac{\left(3x-2\right)\left(3x-1\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(2x+1\right) and \left(3x-1\right)\left(2x+1\right) is \left(x-3\right)\left(3x-1\right)\left(2x+1\right). Multiply \frac{3x-2}{\left(x-3\right)\left(2x+1\right)} times \frac{3x-1}{3x-1}. Multiply \frac{x-2}{\left(3x-1\right)\left(2x+1\right)} times \frac{x-3}{x-3}.
\frac{\left(3x-2\right)\left(3x-1\right)-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Since \frac{\left(3x-2\right)\left(3x-1\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)} and \frac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{2}-3x-6x+2-x^{2}+3x+2x-6}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Do the multiplications in \left(3x-2\right)\left(3x-1\right)-\left(x-2\right)\left(x-3\right).
\frac{8x^{2}-4x-4}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Combine like terms in 9x^{2}-3x-6x+2-x^{2}+3x+2x-6.
\frac{4\left(x-1\right)\left(2x+1\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Factor the expressions that are not already factored in \frac{8x^{2}-4x-4}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}.
\frac{4\left(x-1\right)}{\left(x-3\right)\left(3x-1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Cancel out 2x+1 in both numerator and denominator.
\frac{4\left(x-1\right)}{\left(x-3\right)\left(3x-1\right)}-\frac{2x+2}{\left(x-3\right)\left(3x-1\right)}
Factor 3x^{2}-10x+3.
\frac{4\left(x-1\right)-\left(2x+2\right)}{\left(x-3\right)\left(3x-1\right)}
Since \frac{4\left(x-1\right)}{\left(x-3\right)\left(3x-1\right)} and \frac{2x+2}{\left(x-3\right)\left(3x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-4-2x-2}{\left(x-3\right)\left(3x-1\right)}
Do the multiplications in 4\left(x-1\right)-\left(2x+2\right).
\frac{2x-6}{\left(x-3\right)\left(3x-1\right)}
Combine like terms in 4x-4-2x-2.
\frac{2\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)}
Factor the expressions that are not already factored in \frac{2x-6}{\left(x-3\right)\left(3x-1\right)}.
\frac{2}{3x-1}
Cancel out x-3 in both numerator and denominator.
\frac{3x-2}{\left(x-3\right)\left(2x+1\right)}-\frac{x-2}{\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Factor 2x^{2}-5x-3. Factor 6x^{2}+x-1.
\frac{\left(3x-2\right)\left(3x-1\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(2x+1\right) and \left(3x-1\right)\left(2x+1\right) is \left(x-3\right)\left(3x-1\right)\left(2x+1\right). Multiply \frac{3x-2}{\left(x-3\right)\left(2x+1\right)} times \frac{3x-1}{3x-1}. Multiply \frac{x-2}{\left(3x-1\right)\left(2x+1\right)} times \frac{x-3}{x-3}.
\frac{\left(3x-2\right)\left(3x-1\right)-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Since \frac{\left(3x-2\right)\left(3x-1\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)} and \frac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x^{2}-3x-6x+2-x^{2}+3x+2x-6}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Do the multiplications in \left(3x-2\right)\left(3x-1\right)-\left(x-2\right)\left(x-3\right).
\frac{8x^{2}-4x-4}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Combine like terms in 9x^{2}-3x-6x+2-x^{2}+3x+2x-6.
\frac{4\left(x-1\right)\left(2x+1\right)}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Factor the expressions that are not already factored in \frac{8x^{2}-4x-4}{\left(x-3\right)\left(3x-1\right)\left(2x+1\right)}.
\frac{4\left(x-1\right)}{\left(x-3\right)\left(3x-1\right)}-\frac{2x+2}{3x^{2}-10x+3}
Cancel out 2x+1 in both numerator and denominator.
\frac{4\left(x-1\right)}{\left(x-3\right)\left(3x-1\right)}-\frac{2x+2}{\left(x-3\right)\left(3x-1\right)}
Factor 3x^{2}-10x+3.
\frac{4\left(x-1\right)-\left(2x+2\right)}{\left(x-3\right)\left(3x-1\right)}
Since \frac{4\left(x-1\right)}{\left(x-3\right)\left(3x-1\right)} and \frac{2x+2}{\left(x-3\right)\left(3x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-4-2x-2}{\left(x-3\right)\left(3x-1\right)}
Do the multiplications in 4\left(x-1\right)-\left(2x+2\right).
\frac{2x-6}{\left(x-3\right)\left(3x-1\right)}
Combine like terms in 4x-4-2x-2.
\frac{2\left(x-3\right)}{\left(x-3\right)\left(3x-1\right)}
Factor the expressions that are not already factored in \frac{2x-6}{\left(x-3\right)\left(3x-1\right)}.
\frac{2}{3x-1}
Cancel out x-3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}