Solve for x
x\leq \frac{33}{2}
Graph
Share
Copied to clipboard
2\left(3x-2\right)-\left(0x-3\right)-4\left(2x-1\right)\geq -3\left(8+2\right)
Multiply both sides of the equation by 24, the least common multiple of 12,24,6,8. Since 24 is positive, the inequality direction remains the same.
6x-4-\left(0x-3\right)-4\left(2x-1\right)\geq -3\left(8+2\right)
Use the distributive property to multiply 2 by 3x-2.
6x-4-\left(0-3\right)-4\left(2x-1\right)\geq -3\left(8+2\right)
Anything times zero gives zero.
6x-4-\left(-3\right)-4\left(2x-1\right)\geq -3\left(8+2\right)
Subtract 3 from 0 to get -3.
6x-4+3-4\left(2x-1\right)\geq -3\left(8+2\right)
The opposite of -3 is 3.
6x-1-4\left(2x-1\right)\geq -3\left(8+2\right)
Add -4 and 3 to get -1.
6x-1-8x+4\geq -3\left(8+2\right)
Use the distributive property to multiply -4 by 2x-1.
-2x-1+4\geq -3\left(8+2\right)
Combine 6x and -8x to get -2x.
-2x+3\geq -3\left(8+2\right)
Add -1 and 4 to get 3.
-2x+3\geq -3\times 10
Add 8 and 2 to get 10.
-2x+3\geq -30
Multiply -3 and 10 to get -30.
-2x\geq -30-3
Subtract 3 from both sides.
-2x\geq -33
Subtract 3 from -30 to get -33.
x\leq \frac{-33}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x\leq \frac{33}{2}
Fraction \frac{-33}{-2} can be simplified to \frac{33}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}