Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3}{7}x-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide each term of 3x-1 by 7 to get \frac{3}{7}x-\frac{1}{7}.
\frac{\frac{3}{7}x}{\frac{3}{5}}+\frac{-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide each term of \frac{3}{7}x-\frac{1}{7} by \frac{3}{5} to get \frac{\frac{3}{7}x}{\frac{3}{5}}+\frac{-\frac{1}{7}}{\frac{3}{5}}.
\frac{5}{7}x+\frac{-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide \frac{3}{7}x by \frac{3}{5} to get \frac{5}{7}x.
\frac{5}{7}x-\frac{1}{7}\times \frac{5}{3}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide -\frac{1}{7} by \frac{3}{5} by multiplying -\frac{1}{7} by the reciprocal of \frac{3}{5}.
\frac{5}{7}x+\frac{-5}{7\times 3}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Multiply -\frac{1}{7} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{7}x+\frac{-5}{21}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Do the multiplications in the fraction \frac{-5}{7\times 3}.
\frac{5}{7}x-\frac{5}{21}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Fraction \frac{-5}{21} can be rewritten as -\frac{5}{21} by extracting the negative sign.
\frac{5}{7}x-\frac{5}{21}-\frac{\frac{2x}{3}}{\frac{7}{5}}=0
Subtract \frac{\frac{2x}{3}}{\frac{7}{5}} from both sides.
\frac{5}{7}x-\frac{\frac{2x}{3}}{\frac{7}{5}}=\frac{5}{21}
Add \frac{5}{21} to both sides. Anything plus zero gives itself.
-\frac{2x}{\frac{7}{5}\times 3}+\frac{5}{7}x=\frac{5}{21}
Reorder the terms.
-\frac{2x}{\frac{7\times 3}{5}}+\frac{5}{7}x=\frac{5}{21}
Express \frac{7}{5}\times 3 as a single fraction.
-\frac{2x}{\frac{21}{5}}+\frac{5}{7}x=\frac{5}{21}
Multiply 7 and 3 to get 21.
-\frac{10}{21}x+\frac{5}{7}x=\frac{5}{21}
Divide 2x by \frac{21}{5} to get \frac{10}{21}x.
\frac{5}{21}x=\frac{5}{21}
Combine -\frac{10}{21}x and \frac{5}{7}x to get \frac{5}{21}x.
x=\frac{5}{21}\times \frac{21}{5}
Multiply both sides by \frac{21}{5}, the reciprocal of \frac{5}{21}.
x=1
Cancel out \frac{5}{21} and its reciprocal \frac{21}{5}.