Solve for x
x=1
Graph
Share
Copied to clipboard
\frac{\frac{3}{7}x-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide each term of 3x-1 by 7 to get \frac{3}{7}x-\frac{1}{7}.
\frac{\frac{3}{7}x}{\frac{3}{5}}+\frac{-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide each term of \frac{3}{7}x-\frac{1}{7} by \frac{3}{5} to get \frac{\frac{3}{7}x}{\frac{3}{5}}+\frac{-\frac{1}{7}}{\frac{3}{5}}.
\frac{5}{7}x+\frac{-\frac{1}{7}}{\frac{3}{5}}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide \frac{3}{7}x by \frac{3}{5} to get \frac{5}{7}x.
\frac{5}{7}x-\frac{1}{7}\times \frac{5}{3}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Divide -\frac{1}{7} by \frac{3}{5} by multiplying -\frac{1}{7} by the reciprocal of \frac{3}{5}.
\frac{5}{7}x+\frac{-5}{7\times 3}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Multiply -\frac{1}{7} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{7}x+\frac{-5}{21}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Do the multiplications in the fraction \frac{-5}{7\times 3}.
\frac{5}{7}x-\frac{5}{21}=\frac{\frac{2x}{3}}{\frac{7}{5}}
Fraction \frac{-5}{21} can be rewritten as -\frac{5}{21} by extracting the negative sign.
\frac{5}{7}x-\frac{5}{21}-\frac{\frac{2x}{3}}{\frac{7}{5}}=0
Subtract \frac{\frac{2x}{3}}{\frac{7}{5}} from both sides.
\frac{5}{7}x-\frac{\frac{2x}{3}}{\frac{7}{5}}=\frac{5}{21}
Add \frac{5}{21} to both sides. Anything plus zero gives itself.
-\frac{2x}{\frac{7}{5}\times 3}+\frac{5}{7}x=\frac{5}{21}
Reorder the terms.
-\frac{2x}{\frac{7\times 3}{5}}+\frac{5}{7}x=\frac{5}{21}
Express \frac{7}{5}\times 3 as a single fraction.
-\frac{2x}{\frac{21}{5}}+\frac{5}{7}x=\frac{5}{21}
Multiply 7 and 3 to get 21.
-\frac{10}{21}x+\frac{5}{7}x=\frac{5}{21}
Divide 2x by \frac{21}{5} to get \frac{10}{21}x.
\frac{5}{21}x=\frac{5}{21}
Combine -\frac{10}{21}x and \frac{5}{7}x to get \frac{5}{21}x.
x=\frac{5}{21}\times \frac{21}{5}
Multiply both sides by \frac{21}{5}, the reciprocal of \frac{5}{21}.
x=1
Cancel out \frac{5}{21} and its reciprocal \frac{21}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}