Solve for x (complex solution)
x=\frac{-\sqrt{3}i-3}{2}\approx -1.5-0.866025404i
x=\frac{-3+\sqrt{3}i}{2}\approx -1.5+0.866025404i
Graph
Share
Copied to clipboard
\left(3x+2\right)\left(3x-1\right)=\left(3x+2\right)^{2}+x\left(2x-3\right)
Variable x cannot be equal to any of the values -\frac{2}{3},0 since division by zero is not defined. Multiply both sides of the equation by x\left(3x+2\right)^{2}, the least common multiple of 3x^{2}+2x,x,9x^{2}+12x+4.
9x^{2}+3x-2=\left(3x+2\right)^{2}+x\left(2x-3\right)
Use the distributive property to multiply 3x+2 by 3x-1 and combine like terms.
9x^{2}+3x-2=9x^{2}+12x+4+x\left(2x-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+3x-2=9x^{2}+12x+4+2x^{2}-3x
Use the distributive property to multiply x by 2x-3.
9x^{2}+3x-2=11x^{2}+12x+4-3x
Combine 9x^{2} and 2x^{2} to get 11x^{2}.
9x^{2}+3x-2=11x^{2}+9x+4
Combine 12x and -3x to get 9x.
9x^{2}+3x-2-11x^{2}=9x+4
Subtract 11x^{2} from both sides.
-2x^{2}+3x-2=9x+4
Combine 9x^{2} and -11x^{2} to get -2x^{2}.
-2x^{2}+3x-2-9x=4
Subtract 9x from both sides.
-2x^{2}-6x-2=4
Combine 3x and -9x to get -6x.
-2x^{2}-6x-2-4=0
Subtract 4 from both sides.
-2x^{2}-6x-6=0
Subtract 4 from -2 to get -6.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -6 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+8\left(-6\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-6\right)±\sqrt{36-48}}{2\left(-2\right)}
Multiply 8 times -6.
x=\frac{-\left(-6\right)±\sqrt{-12}}{2\left(-2\right)}
Add 36 to -48.
x=\frac{-\left(-6\right)±2\sqrt{3}i}{2\left(-2\right)}
Take the square root of -12.
x=\frac{6±2\sqrt{3}i}{2\left(-2\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{3}i}{-4}
Multiply 2 times -2.
x=\frac{6+2\sqrt{3}i}{-4}
Now solve the equation x=\frac{6±2\sqrt{3}i}{-4} when ± is plus. Add 6 to 2i\sqrt{3}.
x=\frac{-\sqrt{3}i-3}{2}
Divide 6+2i\sqrt{3} by -4.
x=\frac{-2\sqrt{3}i+6}{-4}
Now solve the equation x=\frac{6±2\sqrt{3}i}{-4} when ± is minus. Subtract 2i\sqrt{3} from 6.
x=\frac{-3+\sqrt{3}i}{2}
Divide 6-2i\sqrt{3} by -4.
x=\frac{-\sqrt{3}i-3}{2} x=\frac{-3+\sqrt{3}i}{2}
The equation is now solved.
\left(3x+2\right)\left(3x-1\right)=\left(3x+2\right)^{2}+x\left(2x-3\right)
Variable x cannot be equal to any of the values -\frac{2}{3},0 since division by zero is not defined. Multiply both sides of the equation by x\left(3x+2\right)^{2}, the least common multiple of 3x^{2}+2x,x,9x^{2}+12x+4.
9x^{2}+3x-2=\left(3x+2\right)^{2}+x\left(2x-3\right)
Use the distributive property to multiply 3x+2 by 3x-1 and combine like terms.
9x^{2}+3x-2=9x^{2}+12x+4+x\left(2x-3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+3x-2=9x^{2}+12x+4+2x^{2}-3x
Use the distributive property to multiply x by 2x-3.
9x^{2}+3x-2=11x^{2}+12x+4-3x
Combine 9x^{2} and 2x^{2} to get 11x^{2}.
9x^{2}+3x-2=11x^{2}+9x+4
Combine 12x and -3x to get 9x.
9x^{2}+3x-2-11x^{2}=9x+4
Subtract 11x^{2} from both sides.
-2x^{2}+3x-2=9x+4
Combine 9x^{2} and -11x^{2} to get -2x^{2}.
-2x^{2}+3x-2-9x=4
Subtract 9x from both sides.
-2x^{2}-6x-2=4
Combine 3x and -9x to get -6x.
-2x^{2}-6x=4+2
Add 2 to both sides.
-2x^{2}-6x=6
Add 4 and 2 to get 6.
\frac{-2x^{2}-6x}{-2}=\frac{6}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{6}{-2}\right)x=\frac{6}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+3x=\frac{6}{-2}
Divide -6 by -2.
x^{2}+3x=-3
Divide 6 by -2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-3+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-3+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{3}{4}
Add -3 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}