Solve for x
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
60\left(\frac{3x-1}{\frac{3}{5}}-\frac{3}{4}\left(\frac{2x-5}{2}+x\right)\right)-8\left(1-3x\right)=180
Multiply both sides of the equation by 60, the least common multiple of 4,2,3,5.
60\left(\frac{3x-1}{\frac{3}{5}}-\frac{3}{4}\left(\frac{2x-5}{2}+x\right)\right)-8+24x=180
Use the distributive property to multiply -8 by 1-3x.
60\left(\frac{3x}{\frac{3}{5}}+\frac{-1}{\frac{3}{5}}-\frac{3}{4}\left(\frac{2x-5}{2}+x\right)\right)-8+24x=180
Divide each term of 3x-1 by \frac{3}{5} to get \frac{3x}{\frac{3}{5}}+\frac{-1}{\frac{3}{5}}.
60\left(5x+\frac{-1}{\frac{3}{5}}-\frac{3}{4}\left(\frac{2x-5}{2}+x\right)\right)-8+24x=180
Divide 3x by \frac{3}{5} to get 5x.
60\left(5x-\frac{5}{3}-\frac{3}{4}\left(\frac{2x-5}{2}+x\right)\right)-8+24x=180
Divide -1 by \frac{3}{5} by multiplying -1 by the reciprocal of \frac{3}{5}.
60\left(5x-\frac{5}{3}-\frac{3}{4}\left(x-\frac{5}{2}+x\right)\right)-8+24x=180
Divide each term of 2x-5 by 2 to get x-\frac{5}{2}.
60\left(5x-\frac{5}{3}-\frac{3}{4}\left(2x-\frac{5}{2}\right)\right)-8+24x=180
Combine x and x to get 2x.
60\left(5x-\frac{5}{3}-\frac{3}{4}\times 2x-\frac{3}{4}\left(-\frac{5}{2}\right)\right)-8+24x=180
Use the distributive property to multiply -\frac{3}{4} by 2x-\frac{5}{2}.
60\left(5x-\frac{5}{3}+\frac{-3\times 2}{4}x-\frac{3}{4}\left(-\frac{5}{2}\right)\right)-8+24x=180
Express -\frac{3}{4}\times 2 as a single fraction.
60\left(5x-\frac{5}{3}+\frac{-6}{4}x-\frac{3}{4}\left(-\frac{5}{2}\right)\right)-8+24x=180
Multiply -3 and 2 to get -6.
60\left(5x-\frac{5}{3}-\frac{3}{2}x-\frac{3}{4}\left(-\frac{5}{2}\right)\right)-8+24x=180
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
60\left(5x-\frac{5}{3}-\frac{3}{2}x+\frac{-3\left(-5\right)}{4\times 2}\right)-8+24x=180
Multiply -\frac{3}{4} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
60\left(5x-\frac{5}{3}-\frac{3}{2}x+\frac{15}{8}\right)-8+24x=180
Do the multiplications in the fraction \frac{-3\left(-5\right)}{4\times 2}.
60\left(\frac{7}{2}x-\frac{5}{3}+\frac{15}{8}\right)-8+24x=180
Combine 5x and -\frac{3}{2}x to get \frac{7}{2}x.
60\left(\frac{7}{2}x-\frac{40}{24}+\frac{45}{24}\right)-8+24x=180
Least common multiple of 3 and 8 is 24. Convert -\frac{5}{3} and \frac{15}{8} to fractions with denominator 24.
60\left(\frac{7}{2}x+\frac{-40+45}{24}\right)-8+24x=180
Since -\frac{40}{24} and \frac{45}{24} have the same denominator, add them by adding their numerators.
60\left(\frac{7}{2}x+\frac{5}{24}\right)-8+24x=180
Add -40 and 45 to get 5.
60\times \frac{7}{2}x+60\times \frac{5}{24}-8+24x=180
Use the distributive property to multiply 60 by \frac{7}{2}x+\frac{5}{24}.
\frac{60\times 7}{2}x+60\times \frac{5}{24}-8+24x=180
Express 60\times \frac{7}{2} as a single fraction.
\frac{420}{2}x+60\times \frac{5}{24}-8+24x=180
Multiply 60 and 7 to get 420.
210x+60\times \frac{5}{24}-8+24x=180
Divide 420 by 2 to get 210.
210x+\frac{60\times 5}{24}-8+24x=180
Express 60\times \frac{5}{24} as a single fraction.
210x+\frac{300}{24}-8+24x=180
Multiply 60 and 5 to get 300.
210x+\frac{25}{2}-8+24x=180
Reduce the fraction \frac{300}{24} to lowest terms by extracting and canceling out 12.
210x+\frac{25}{2}-\frac{16}{2}+24x=180
Convert 8 to fraction \frac{16}{2}.
210x+\frac{25-16}{2}+24x=180
Since \frac{25}{2} and \frac{16}{2} have the same denominator, subtract them by subtracting their numerators.
210x+\frac{9}{2}+24x=180
Subtract 16 from 25 to get 9.
234x+\frac{9}{2}=180
Combine 210x and 24x to get 234x.
234x=180-\frac{9}{2}
Subtract \frac{9}{2} from both sides.
234x=\frac{360}{2}-\frac{9}{2}
Convert 180 to fraction \frac{360}{2}.
234x=\frac{360-9}{2}
Since \frac{360}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
234x=\frac{351}{2}
Subtract 9 from 360 to get 351.
x=\frac{\frac{351}{2}}{234}
Divide both sides by 234.
x=\frac{351}{2\times 234}
Express \frac{\frac{351}{2}}{234} as a single fraction.
x=\frac{351}{468}
Multiply 2 and 234 to get 468.
x=\frac{3}{4}
Reduce the fraction \frac{351}{468} to lowest terms by extracting and canceling out 117.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}