Solve for x
x=\frac{3\left(\sqrt{3}-3\right)}{2}\approx -1.901923789
Graph
Share
Copied to clipboard
\frac{3x\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\frac{2x\sqrt{3}}{\sqrt{3}-1}=\frac{27}{2\sqrt{3}}
Rationalize the denominator of \frac{3x}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
\frac{3x\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2x\sqrt{3}}{\sqrt{3}-1}=\frac{27}{2\sqrt{3}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3x\left(3-\sqrt{3}\right)}{9-3}-\frac{2x\sqrt{3}}{\sqrt{3}-1}=\frac{27}{2\sqrt{3}}
Square 3. Square \sqrt{3}.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}}{\sqrt{3}-1}=\frac{27}{2\sqrt{3}}
Subtract 3 from 9 to get 6.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{27}{2\sqrt{3}}
Rationalize the denominator of \frac{2x\sqrt{3}}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}=\frac{27}{2\sqrt{3}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}\left(\sqrt{3}+1\right)}{3-1}=\frac{27}{2\sqrt{3}}
Square \sqrt{3}. Square 1.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{2x\sqrt{3}\left(\sqrt{3}+1\right)}{2}=\frac{27}{2\sqrt{3}}
Subtract 1 from 3 to get 2.
\frac{3x\left(3-\sqrt{3}\right)}{6}-\frac{3\times 2x\sqrt{3}\left(\sqrt{3}+1\right)}{6}=\frac{27}{2\sqrt{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{2x\sqrt{3}\left(\sqrt{3}+1\right)}{2} times \frac{3}{3}.
\frac{3x\left(3-\sqrt{3}\right)-3\times 2x\sqrt{3}\left(\sqrt{3}+1\right)}{6}=\frac{27}{2\sqrt{3}}
Since \frac{3x\left(3-\sqrt{3}\right)}{6} and \frac{3\times 2x\sqrt{3}\left(\sqrt{3}+1\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{9x-3x\sqrt{3}-18x-6x\sqrt{3}}{6}=\frac{27}{2\sqrt{3}}
Do the multiplications in 3x\left(3-\sqrt{3}\right)-3\times 2x\sqrt{3}\left(\sqrt{3}+1\right).
\frac{-9x-9x\sqrt{3}}{6}=\frac{27}{2\sqrt{3}}
Combine like terms in 9x-3x\sqrt{3}-18x-6x\sqrt{3}.
\frac{-9x-9x\sqrt{3}}{6}=\frac{27\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{27}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-9x-9x\sqrt{3}}{6}=\frac{27\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{-9x-9x\sqrt{3}}{6}=\frac{9\sqrt{3}}{2}
Cancel out 3 in both numerator and denominator.
-9x-9x\sqrt{3}=3\times 9\sqrt{3}
Multiply both sides of the equation by 6, the least common multiple of 6,2.
-9\sqrt{3}x-9x=3\times 9\sqrt{3}
Reorder the terms.
-9\sqrt{3}x-9x=27\sqrt{3}
Multiply 3 and 9 to get 27.
\left(-9\sqrt{3}-9\right)x=27\sqrt{3}
Combine all terms containing x.
\frac{\left(-9\sqrt{3}-9\right)x}{-9\sqrt{3}-9}=\frac{27\sqrt{3}}{-9\sqrt{3}-9}
Divide both sides by -9\sqrt{3}-9.
x=\frac{27\sqrt{3}}{-9\sqrt{3}-9}
Dividing by -9\sqrt{3}-9 undoes the multiplication by -9\sqrt{3}-9.
x=\frac{3\sqrt{3}-9}{2}
Divide 27\sqrt{3} by -9\sqrt{3}-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}