Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}-\frac{2x\left(2x+5\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)\left(2x+5\right) and \left(x+2\right)\left(x+4\right) is \left(x+2\right)\left(x+4\right)\left(2x+5\right). Multiply \frac{3x}{\left(x+4\right)\left(2x+5\right)} times \frac{x+2}{x+2}. Multiply \frac{2x}{\left(x+2\right)\left(x+4\right)} times \frac{2x+5}{2x+5}.
\frac{3x\left(x+2\right)-2x\left(2x+5\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Since \frac{3x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)} and \frac{2x\left(2x+5\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+6x-4x^{2}-10x}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Do the multiplications in 3x\left(x+2\right)-2x\left(2x+5\right).
\frac{-x^{2}-4x}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Combine like terms in 3x^{2}+6x-4x^{2}-10x.
\frac{x\left(-x-4\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Factor the expressions that are not already factored in \frac{-x^{2}-4x}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}.
\frac{-x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Extract the negative sign in -4-x.
\frac{-x}{\left(x+2\right)\left(2x+5\right)}
Cancel out x+4 in both numerator and denominator.
\frac{-x}{2x^{2}+9x+10}
Expand \left(x+2\right)\left(2x+5\right).
\frac{3x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}-\frac{2x\left(2x+5\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)\left(2x+5\right) and \left(x+2\right)\left(x+4\right) is \left(x+2\right)\left(x+4\right)\left(2x+5\right). Multiply \frac{3x}{\left(x+4\right)\left(2x+5\right)} times \frac{x+2}{x+2}. Multiply \frac{2x}{\left(x+2\right)\left(x+4\right)} times \frac{2x+5}{2x+5}.
\frac{3x\left(x+2\right)-2x\left(2x+5\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Since \frac{3x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)} and \frac{2x\left(2x+5\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+6x-4x^{2}-10x}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Do the multiplications in 3x\left(x+2\right)-2x\left(2x+5\right).
\frac{-x^{2}-4x}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Combine like terms in 3x^{2}+6x-4x^{2}-10x.
\frac{x\left(-x-4\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Factor the expressions that are not already factored in \frac{-x^{2}-4x}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}.
\frac{-x\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(2x+5\right)}
Extract the negative sign in -4-x.
\frac{-x}{\left(x+2\right)\left(2x+5\right)}
Cancel out x+4 in both numerator and denominator.
\frac{-x}{2x^{2}+9x+10}
Expand \left(x+2\right)\left(2x+5\right).