Solve for x
x = \frac{\sqrt{337} + 1}{6} \approx 3.226259958
x=\frac{1-\sqrt{337}}{6}\approx -2.892926625
Graph
Share
Copied to clipboard
\left(x+1\right)\times 3x-4\left(5-x\right)=8\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+1\right), the least common multiple of 4,x+1.
\left(3x+3\right)x-4\left(5-x\right)=8\left(x+1\right)
Use the distributive property to multiply x+1 by 3.
3x^{2}+3x-4\left(5-x\right)=8\left(x+1\right)
Use the distributive property to multiply 3x+3 by x.
3x^{2}+3x-20+4x=8\left(x+1\right)
Use the distributive property to multiply -4 by 5-x.
3x^{2}+7x-20=8\left(x+1\right)
Combine 3x and 4x to get 7x.
3x^{2}+7x-20=8x+8
Use the distributive property to multiply 8 by x+1.
3x^{2}+7x-20-8x=8
Subtract 8x from both sides.
3x^{2}-x-20=8
Combine 7x and -8x to get -x.
3x^{2}-x-20-8=0
Subtract 8 from both sides.
3x^{2}-x-28=0
Subtract 8 from -20 to get -28.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-28\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -1 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-28\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-1\right)±\sqrt{1+336}}{2\times 3}
Multiply -12 times -28.
x=\frac{-\left(-1\right)±\sqrt{337}}{2\times 3}
Add 1 to 336.
x=\frac{1±\sqrt{337}}{2\times 3}
The opposite of -1 is 1.
x=\frac{1±\sqrt{337}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{337}+1}{6}
Now solve the equation x=\frac{1±\sqrt{337}}{6} when ± is plus. Add 1 to \sqrt{337}.
x=\frac{1-\sqrt{337}}{6}
Now solve the equation x=\frac{1±\sqrt{337}}{6} when ± is minus. Subtract \sqrt{337} from 1.
x=\frac{\sqrt{337}+1}{6} x=\frac{1-\sqrt{337}}{6}
The equation is now solved.
\left(x+1\right)\times 3x-4\left(5-x\right)=8\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+1\right), the least common multiple of 4,x+1.
\left(3x+3\right)x-4\left(5-x\right)=8\left(x+1\right)
Use the distributive property to multiply x+1 by 3.
3x^{2}+3x-4\left(5-x\right)=8\left(x+1\right)
Use the distributive property to multiply 3x+3 by x.
3x^{2}+3x-20+4x=8\left(x+1\right)
Use the distributive property to multiply -4 by 5-x.
3x^{2}+7x-20=8\left(x+1\right)
Combine 3x and 4x to get 7x.
3x^{2}+7x-20=8x+8
Use the distributive property to multiply 8 by x+1.
3x^{2}+7x-20-8x=8
Subtract 8x from both sides.
3x^{2}-x-20=8
Combine 7x and -8x to get -x.
3x^{2}-x=8+20
Add 20 to both sides.
3x^{2}-x=28
Add 8 and 20 to get 28.
\frac{3x^{2}-x}{3}=\frac{28}{3}
Divide both sides by 3.
x^{2}-\frac{1}{3}x=\frac{28}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{28}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{28}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{337}{36}
Add \frac{28}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=\frac{337}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{337}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{337}}{6} x-\frac{1}{6}=-\frac{\sqrt{337}}{6}
Simplify.
x=\frac{\sqrt{337}+1}{6} x=\frac{1-\sqrt{337}}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}