Solve for x
x=-166
Graph
Share
Copied to clipboard
3x^{2}-360x=498\left(-x+120\right)
Variable x cannot be equal to 120 since division by zero is not defined. Multiply both sides of the equation by -x+120.
3x^{2}-360x=-498x+59760
Use the distributive property to multiply 498 by -x+120.
3x^{2}-360x+498x=59760
Add 498x to both sides.
3x^{2}+138x=59760
Combine -360x and 498x to get 138x.
3x^{2}+138x-59760=0
Subtract 59760 from both sides.
x^{2}+46x-19920=0
Divide both sides by 3.
a+b=46 ab=1\left(-19920\right)=-19920
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-19920. To find a and b, set up a system to be solved.
-1,19920 -2,9960 -3,6640 -4,4980 -5,3984 -6,3320 -8,2490 -10,1992 -12,1660 -15,1328 -16,1245 -20,996 -24,830 -30,664 -40,498 -48,415 -60,332 -80,249 -83,240 -120,166
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -19920.
-1+19920=19919 -2+9960=9958 -3+6640=6637 -4+4980=4976 -5+3984=3979 -6+3320=3314 -8+2490=2482 -10+1992=1982 -12+1660=1648 -15+1328=1313 -16+1245=1229 -20+996=976 -24+830=806 -30+664=634 -40+498=458 -48+415=367 -60+332=272 -80+249=169 -83+240=157 -120+166=46
Calculate the sum for each pair.
a=-120 b=166
The solution is the pair that gives sum 46.
\left(x^{2}-120x\right)+\left(166x-19920\right)
Rewrite x^{2}+46x-19920 as \left(x^{2}-120x\right)+\left(166x-19920\right).
x\left(x-120\right)+166\left(x-120\right)
Factor out x in the first and 166 in the second group.
\left(x-120\right)\left(x+166\right)
Factor out common term x-120 by using distributive property.
x=120 x=-166
To find equation solutions, solve x-120=0 and x+166=0.
x=-166
Variable x cannot be equal to 120.
3x^{2}-360x=498\left(-x+120\right)
Variable x cannot be equal to 120 since division by zero is not defined. Multiply both sides of the equation by -x+120.
3x^{2}-360x=-498x+59760
Use the distributive property to multiply 498 by -x+120.
3x^{2}-360x+498x=59760
Add 498x to both sides.
3x^{2}+138x=59760
Combine -360x and 498x to get 138x.
3x^{2}+138x-59760=0
Subtract 59760 from both sides.
x=\frac{-138±\sqrt{138^{2}-4\times 3\left(-59760\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 138 for b, and -59760 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-138±\sqrt{19044-4\times 3\left(-59760\right)}}{2\times 3}
Square 138.
x=\frac{-138±\sqrt{19044-12\left(-59760\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-138±\sqrt{19044+717120}}{2\times 3}
Multiply -12 times -59760.
x=\frac{-138±\sqrt{736164}}{2\times 3}
Add 19044 to 717120.
x=\frac{-138±858}{2\times 3}
Take the square root of 736164.
x=\frac{-138±858}{6}
Multiply 2 times 3.
x=\frac{720}{6}
Now solve the equation x=\frac{-138±858}{6} when ± is plus. Add -138 to 858.
x=120
Divide 720 by 6.
x=-\frac{996}{6}
Now solve the equation x=\frac{-138±858}{6} when ± is minus. Subtract 858 from -138.
x=-166
Divide -996 by 6.
x=120 x=-166
The equation is now solved.
x=-166
Variable x cannot be equal to 120.
3x^{2}-360x=498\left(-x+120\right)
Variable x cannot be equal to 120 since division by zero is not defined. Multiply both sides of the equation by -x+120.
3x^{2}-360x=-498x+59760
Use the distributive property to multiply 498 by -x+120.
3x^{2}-360x+498x=59760
Add 498x to both sides.
3x^{2}+138x=59760
Combine -360x and 498x to get 138x.
\frac{3x^{2}+138x}{3}=\frac{59760}{3}
Divide both sides by 3.
x^{2}+\frac{138}{3}x=\frac{59760}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+46x=\frac{59760}{3}
Divide 138 by 3.
x^{2}+46x=19920
Divide 59760 by 3.
x^{2}+46x+23^{2}=19920+23^{2}
Divide 46, the coefficient of the x term, by 2 to get 23. Then add the square of 23 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+46x+529=19920+529
Square 23.
x^{2}+46x+529=20449
Add 19920 to 529.
\left(x+23\right)^{2}=20449
Factor x^{2}+46x+529. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+23\right)^{2}}=\sqrt{20449}
Take the square root of both sides of the equation.
x+23=143 x+23=-143
Simplify.
x=120 x=-166
Subtract 23 from both sides of the equation.
x=-166
Variable x cannot be equal to 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}