Solve for x
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
3x^{2}-3x+1=\left(x-1\right)\left(x+1\right)\times 3+\left(x-1\right)\times 2-\left(x+1\right)\times 3
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x^{2}-1,x+1,x-1.
3x^{2}-3x+1=\left(x^{2}-1\right)\times 3+\left(x-1\right)\times 2-\left(x+1\right)\times 3
Use the distributive property to multiply x-1 by x+1 and combine like terms.
3x^{2}-3x+1=3x^{2}-3+\left(x-1\right)\times 2-\left(x+1\right)\times 3
Use the distributive property to multiply x^{2}-1 by 3.
3x^{2}-3x+1=3x^{2}-3+2x-2-\left(x+1\right)\times 3
Use the distributive property to multiply x-1 by 2.
3x^{2}-3x+1=3x^{2}-5+2x-\left(x+1\right)\times 3
Subtract 2 from -3 to get -5.
3x^{2}-3x+1=3x^{2}-5+2x-\left(3x+3\right)
Use the distributive property to multiply x+1 by 3.
3x^{2}-3x+1=3x^{2}-5+2x-3x-3
To find the opposite of 3x+3, find the opposite of each term.
3x^{2}-3x+1=3x^{2}-5-x-3
Combine 2x and -3x to get -x.
3x^{2}-3x+1=3x^{2}-8-x
Subtract 3 from -5 to get -8.
3x^{2}-3x+1-3x^{2}=-8-x
Subtract 3x^{2} from both sides.
-3x+1=-8-x
Combine 3x^{2} and -3x^{2} to get 0.
-3x+1+x=-8
Add x to both sides.
-2x+1=-8
Combine -3x and x to get -2x.
-2x=-8-1
Subtract 1 from both sides.
-2x=-9
Subtract 1 from -8 to get -9.
x=\frac{-9}{-2}
Divide both sides by -2.
x=\frac{9}{2}
Fraction \frac{-9}{-2} can be simplified to \frac{9}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}