Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x^{2}-3}{5}\times \frac{15x+45}{x^{2}+3x-4}\times \frac{x}{x^{2}-9}
Use the distributive property to multiply 15 by x+3.
\frac{\left(3x^{2}-3\right)\left(15x+45\right)}{5\left(x^{2}+3x-4\right)}\times \frac{x}{x^{2}-9}
Multiply \frac{3x^{2}-3}{5} times \frac{15x+45}{x^{2}+3x-4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x^{2}-3\right)\left(15x+45\right)x}{5\left(x^{2}+3x-4\right)\left(x^{2}-9\right)}
Multiply \frac{\left(3x^{2}-3\right)\left(15x+45\right)}{5\left(x^{2}+3x-4\right)} times \frac{x}{x^{2}-9} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 15x\left(x-1\right)\left(x+1\right)\left(x+3\right)}{5\left(x-3\right)\left(x-1\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{3\times 3x\left(x+1\right)}{\left(x-3\right)\left(x+4\right)}
Cancel out 5\left(x-1\right)\left(x+3\right) in both numerator and denominator.
\frac{9x^{2}+9x}{x^{2}+x-12}
Expand the expression.
\frac{3x^{2}-3}{5}\times \frac{15x+45}{x^{2}+3x-4}\times \frac{x}{x^{2}-9}
Use the distributive property to multiply 15 by x+3.
\frac{\left(3x^{2}-3\right)\left(15x+45\right)}{5\left(x^{2}+3x-4\right)}\times \frac{x}{x^{2}-9}
Multiply \frac{3x^{2}-3}{5} times \frac{15x+45}{x^{2}+3x-4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3x^{2}-3\right)\left(15x+45\right)x}{5\left(x^{2}+3x-4\right)\left(x^{2}-9\right)}
Multiply \frac{\left(3x^{2}-3\right)\left(15x+45\right)}{5\left(x^{2}+3x-4\right)} times \frac{x}{x^{2}-9} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 15x\left(x-1\right)\left(x+1\right)\left(x+3\right)}{5\left(x-3\right)\left(x-1\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{3\times 3x\left(x+1\right)}{\left(x-3\right)\left(x+4\right)}
Cancel out 5\left(x-1\right)\left(x+3\right) in both numerator and denominator.
\frac{9x^{2}+9x}{x^{2}+x-12}
Expand the expression.