Solve for x
x = \frac{7 \sqrt{257} - 77}{34} \approx 1.035839317
x=\frac{-7\sqrt{257}-77}{34}\approx -5.565251082
Graph
Share
Copied to clipboard
3x^{2}-20x^{2}-77x+98=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+1\right)\left(-x+1\right).
-17x^{2}-77x+98=0
Combine 3x^{2} and -20x^{2} to get -17x^{2}.
x=\frac{-\left(-77\right)±\sqrt{\left(-77\right)^{2}-4\left(-17\right)\times 98}}{2\left(-17\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -17 for a, -77 for b, and 98 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-77\right)±\sqrt{5929-4\left(-17\right)\times 98}}{2\left(-17\right)}
Square -77.
x=\frac{-\left(-77\right)±\sqrt{5929+68\times 98}}{2\left(-17\right)}
Multiply -4 times -17.
x=\frac{-\left(-77\right)±\sqrt{5929+6664}}{2\left(-17\right)}
Multiply 68 times 98.
x=\frac{-\left(-77\right)±\sqrt{12593}}{2\left(-17\right)}
Add 5929 to 6664.
x=\frac{-\left(-77\right)±7\sqrt{257}}{2\left(-17\right)}
Take the square root of 12593.
x=\frac{77±7\sqrt{257}}{2\left(-17\right)}
The opposite of -77 is 77.
x=\frac{77±7\sqrt{257}}{-34}
Multiply 2 times -17.
x=\frac{7\sqrt{257}+77}{-34}
Now solve the equation x=\frac{77±7\sqrt{257}}{-34} when ± is plus. Add 77 to 7\sqrt{257}.
x=\frac{-7\sqrt{257}-77}{34}
Divide 77+7\sqrt{257} by -34.
x=\frac{77-7\sqrt{257}}{-34}
Now solve the equation x=\frac{77±7\sqrt{257}}{-34} when ± is minus. Subtract 7\sqrt{257} from 77.
x=\frac{7\sqrt{257}-77}{34}
Divide 77-7\sqrt{257} by -34.
x=\frac{-7\sqrt{257}-77}{34} x=\frac{7\sqrt{257}-77}{34}
The equation is now solved.
3x^{2}-20x^{2}-77x+98=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+1\right)\left(-x+1\right).
-17x^{2}-77x+98=0
Combine 3x^{2} and -20x^{2} to get -17x^{2}.
-17x^{2}-77x=-98
Subtract 98 from both sides. Anything subtracted from zero gives its negation.
\frac{-17x^{2}-77x}{-17}=-\frac{98}{-17}
Divide both sides by -17.
x^{2}+\left(-\frac{77}{-17}\right)x=-\frac{98}{-17}
Dividing by -17 undoes the multiplication by -17.
x^{2}+\frac{77}{17}x=-\frac{98}{-17}
Divide -77 by -17.
x^{2}+\frac{77}{17}x=\frac{98}{17}
Divide -98 by -17.
x^{2}+\frac{77}{17}x+\left(\frac{77}{34}\right)^{2}=\frac{98}{17}+\left(\frac{77}{34}\right)^{2}
Divide \frac{77}{17}, the coefficient of the x term, by 2 to get \frac{77}{34}. Then add the square of \frac{77}{34} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{77}{17}x+\frac{5929}{1156}=\frac{98}{17}+\frac{5929}{1156}
Square \frac{77}{34} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{77}{17}x+\frac{5929}{1156}=\frac{12593}{1156}
Add \frac{98}{17} to \frac{5929}{1156} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{77}{34}\right)^{2}=\frac{12593}{1156}
Factor x^{2}+\frac{77}{17}x+\frac{5929}{1156}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{77}{34}\right)^{2}}=\sqrt{\frac{12593}{1156}}
Take the square root of both sides of the equation.
x+\frac{77}{34}=\frac{7\sqrt{257}}{34} x+\frac{77}{34}=-\frac{7\sqrt{257}}{34}
Simplify.
x=\frac{7\sqrt{257}-77}{34} x=\frac{-7\sqrt{257}-77}{34}
Subtract \frac{77}{34} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}