Solve for y
y=\frac{zx^{2}}{130}
z\neq 0\text{ and }x\neq 0
Solve for x
x=\sqrt{\frac{130y}{z}}
x=-\sqrt{\frac{130y}{z}}\text{, }\left(z<0\text{ and }y<0\right)\text{ or }\left(z>0\text{ and }y>0\right)
Share
Copied to clipboard
z\times 3x^{2}=5y\times 78
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5yz, the least common multiple of 5y,z.
z\times 3x^{2}=390y
Multiply 5 and 78 to get 390.
390y=z\times 3x^{2}
Swap sides so that all variable terms are on the left hand side.
390y=3zx^{2}
The equation is in standard form.
\frac{390y}{390}=\frac{3zx^{2}}{390}
Divide both sides by 390.
y=\frac{3zx^{2}}{390}
Dividing by 390 undoes the multiplication by 390.
y=\frac{zx^{2}}{130}
Divide 3zx^{2} by 390.
y=\frac{zx^{2}}{130}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}