Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\times 3x^{2}+2x+8=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
6x^{2}+2x+8=0
Multiply 2 and 3 to get 6.
x=\frac{-2±\sqrt{2^{2}-4\times 6\times 8}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 2 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 6\times 8}}{2\times 6}
Square 2.
x=\frac{-2±\sqrt{4-24\times 8}}{2\times 6}
Multiply -4 times 6.
x=\frac{-2±\sqrt{4-192}}{2\times 6}
Multiply -24 times 8.
x=\frac{-2±\sqrt{-188}}{2\times 6}
Add 4 to -192.
x=\frac{-2±2\sqrt{47}i}{2\times 6}
Take the square root of -188.
x=\frac{-2±2\sqrt{47}i}{12}
Multiply 2 times 6.
x=\frac{-2+2\sqrt{47}i}{12}
Now solve the equation x=\frac{-2±2\sqrt{47}i}{12} when ± is plus. Add -2 to 2i\sqrt{47}.
x=\frac{-1+\sqrt{47}i}{6}
Divide -2+2i\sqrt{47} by 12.
x=\frac{-2\sqrt{47}i-2}{12}
Now solve the equation x=\frac{-2±2\sqrt{47}i}{12} when ± is minus. Subtract 2i\sqrt{47} from -2.
x=\frac{-\sqrt{47}i-1}{6}
Divide -2-2i\sqrt{47} by 12.
x=\frac{-1+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-1}{6}
The equation is now solved.
2\times 3x^{2}+2x+8=0
Multiply both sides of the equation by 4, the least common multiple of 2,4.
6x^{2}+2x+8=0
Multiply 2 and 3 to get 6.
6x^{2}+2x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}+2x}{6}=-\frac{8}{6}
Divide both sides by 6.
x^{2}+\frac{2}{6}x=-\frac{8}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{1}{3}x=-\frac{8}{6}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{3}x=-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{4}{3}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{4}{3}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{47}{36}
Add -\frac{4}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=-\frac{47}{36}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{\sqrt{47}i}{6} x+\frac{1}{6}=-\frac{\sqrt{47}i}{6}
Simplify.
x=\frac{-1+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-1}{6}
Subtract \frac{1}{6} from both sides of the equation.