Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x^{2}\right)^{1}\times \frac{1}{-5x^{2}}
Use the rules of exponents to simplify the expression.
3^{1}\left(x^{2}\right)^{1}\times \frac{1}{-5}\times \frac{1}{x^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
3^{1}\times \frac{1}{-5}\left(x^{2}\right)^{1}\times \frac{1}{x^{2}}
Use the Commutative Property of Multiplication.
3^{1}\times \frac{1}{-5}x^{2}x^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
3^{1}\times \frac{1}{-5}x^{2}x^{-2}
Multiply 2 times -1.
3^{1}\times \frac{1}{-5}x^{2-2}
To multiply powers of the same base, add their exponents.
3^{1}\times \frac{1}{-5}x^{0}
Add the exponents 2 and -2.
3\times \frac{1}{-5}x^{0}
Raise 3 to the power 1.
3\left(-\frac{1}{5}\right)x^{0}
Raise -5 to the power -1.
-\frac{3}{5}x^{0}
Multiply 3 times -\frac{1}{5}.
-\frac{3}{5}
For any term t except 0, t^{0}=1.
\frac{3^{1}x^{2}}{\left(-5\right)^{1}x^{2}}
Use the rules of exponents to simplify the expression.
\frac{3^{1}x^{2-2}}{\left(-5\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{3^{1}x^{0}}{\left(-5\right)^{1}}
Subtract 2 from 2.
\frac{3^{1}}{\left(-5\right)^{1}}
For any number a except 0, a^{0}=1.
-\frac{3}{5}
Divide 3 by -5.