Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x^{2}+5x+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{1-x}{x^{2}+x+1}-\frac{3}{x-1}
Factor x^{3}-1.
\frac{3x^{2}+5x+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x^{2}+x+1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{1-x}{x^{2}+x+1} times \frac{x-1}{x-1}.
\frac{3x^{2}+5x+1-\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
Since \frac{3x^{2}+5x+1}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+5x+1-x+1+x^{2}-x}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
Do the multiplications in 3x^{2}+5x+1-\left(1-x\right)\left(x-1\right).
\frac{4x^{2}+3x+2}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
Combine like terms in 3x^{2}+5x+1-x+1+x^{2}-x.
\frac{4x^{2}+3x+2}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x-1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{3}{x-1} times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{4x^{2}+3x+2-3\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Since \frac{4x^{2}+3x+2}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{3\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+3x+2-3x^{2}-3x-3}{\left(x-1\right)\left(x^{2}+x+1\right)}
Do the multiplications in 4x^{2}+3x+2-3\left(x^{2}+x+1\right).
\frac{x^{2}-1}{\left(x-1\right)\left(x^{2}+x+1\right)}
Combine like terms in 4x^{2}+3x+2-3x^{2}-3x-3.
\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-1}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x+1}{x^{2}+x+1}
Cancel out x-1 in both numerator and denominator.
\frac{3x^{2}+5x+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{1-x}{x^{2}+x+1}-\frac{3}{x-1}
Factor x^{3}-1.
\frac{3x^{2}+5x+1}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x^{2}+x+1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{1-x}{x^{2}+x+1} times \frac{x-1}{x-1}.
\frac{3x^{2}+5x+1-\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
Since \frac{3x^{2}+5x+1}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+5x+1-x+1+x^{2}-x}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
Do the multiplications in 3x^{2}+5x+1-\left(1-x\right)\left(x-1\right).
\frac{4x^{2}+3x+2}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3}{x-1}
Combine like terms in 3x^{2}+5x+1-x+1+x^{2}-x.
\frac{4x^{2}+3x+2}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{3\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x^{2}+x+1\right) and x-1 is \left(x-1\right)\left(x^{2}+x+1\right). Multiply \frac{3}{x-1} times \frac{x^{2}+x+1}{x^{2}+x+1}.
\frac{4x^{2}+3x+2-3\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Since \frac{4x^{2}+3x+2}{\left(x-1\right)\left(x^{2}+x+1\right)} and \frac{3\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+3x+2-3x^{2}-3x-3}{\left(x-1\right)\left(x^{2}+x+1\right)}
Do the multiplications in 4x^{2}+3x+2-3\left(x^{2}+x+1\right).
\frac{x^{2}-1}{\left(x-1\right)\left(x^{2}+x+1\right)}
Combine like terms in 4x^{2}+3x+2-3x^{2}-3x-3.
\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-1}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x+1}{x^{2}+x+1}
Cancel out x-1 in both numerator and denominator.