Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Subtract 5 from 4 to get -1.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Factor x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+4\right) and x+1 is \left(x+1\right)\left(x+4\right). Multiply \frac{2x}{x+1} times \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Since \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} and \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Do the multiplications in 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Combine like terms in 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+4\right) and x+4 is \left(x+1\right)\left(x+4\right). Multiply \frac{4}{x+4} times \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Since \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} and \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Do the multiplications in x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Combine like terms in x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Expand \left(x+1\right)\left(x+4\right).
\frac{3x^{2}-1}{x^{2}+5x+4}-\frac{2x}{x+1}+\frac{4}{x+4}
Subtract 5 from 4 to get -1.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x}{x+1}+\frac{4}{x+4}
Factor x^{2}+5x+4.
\frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)}-\frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+4\right) and x+1 is \left(x+1\right)\left(x+4\right). Multiply \frac{2x}{x+1} times \frac{x+4}{x+4}.
\frac{3x^{2}-1-2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Since \frac{3x^{2}-1}{\left(x+1\right)\left(x+4\right)} and \frac{2x\left(x+4\right)}{\left(x+1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-1-2x^{2}-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Do the multiplications in 3x^{2}-1-2x\left(x+4\right).
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4}{x+4}
Combine like terms in 3x^{2}-1-2x^{2}-8x.
\frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)}+\frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x+4\right) and x+4 is \left(x+1\right)\left(x+4\right). Multiply \frac{4}{x+4} times \frac{x+1}{x+1}.
\frac{x^{2}-1-8x+4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}
Since \frac{x^{2}-1-8x}{\left(x+1\right)\left(x+4\right)} and \frac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}-1-8x+4x+4}{\left(x+1\right)\left(x+4\right)}
Do the multiplications in x^{2}-1-8x+4\left(x+1\right).
\frac{x^{2}+3-4x}{\left(x+1\right)\left(x+4\right)}
Combine like terms in x^{2}-1-8x+4x+4.
\frac{x^{2}+3-4x}{x^{2}+5x+4}
Expand \left(x+1\right)\left(x+4\right).