Solve for x
x\in \left(-\infty,-1\right)\cup \left(0,\infty\right)
Graph
Share
Copied to clipboard
\frac{3x^{2}+2x}{x+1}-3x<0
Subtract 3x from both sides.
\frac{3x^{2}+2x}{x+1}+\frac{-3x\left(x+1\right)}{x+1}<0
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{x+1}{x+1}.
\frac{3x^{2}+2x-3x\left(x+1\right)}{x+1}<0
Since \frac{3x^{2}+2x}{x+1} and \frac{-3x\left(x+1\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+2x-3x^{2}-3x}{x+1}<0
Do the multiplications in 3x^{2}+2x-3x\left(x+1\right).
\frac{-x}{x+1}<0
Combine like terms in 3x^{2}+2x-3x^{2}-3x.
-x>0 x+1<0
For the quotient to be negative, -x and x+1 have to be of the opposite signs. Consider the case when -x is positive and x+1 is negative.
x<-1
The solution satisfying both inequalities is x<-1.
x+1>0 -x<0
Consider the case when x+1 is positive and -x is negative.
x>0
The solution satisfying both inequalities is x>0.
x<-1\text{; }x>0
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}