Solve for x (complex solution)
x=-\frac{i\sqrt{30-15\sqrt{2}}}{3}\approx -0-0.988084374i
x=\frac{i\sqrt{30-15\sqrt{2}}}{3}\approx 0.988084374i
Graph
Share
Copied to clipboard
\frac{\left(3x^{2}+10\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=5
Rationalize the denominator of \frac{3x^{2}+10}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3x^{2}+10\right)\sqrt{2}}{2}=5
The square of \sqrt{2} is 2.
\frac{3x^{2}\sqrt{2}+10\sqrt{2}}{2}=5
Use the distributive property to multiply 3x^{2}+10 by \sqrt{2}.
3x^{2}\sqrt{2}+10\sqrt{2}=5\times 2
Multiply both sides by 2.
3x^{2}\sqrt{2}+10\sqrt{2}=10
Multiply 5 and 2 to get 10.
3x^{2}\sqrt{2}=10-10\sqrt{2}
Subtract 10\sqrt{2} from both sides.
x^{2}=\frac{10-10\sqrt{2}}{3\sqrt{2}}
Dividing by 3\sqrt{2} undoes the multiplication by 3\sqrt{2}.
x^{2}=\frac{5\sqrt{2}-10}{3}
Divide 10-10\sqrt{2} by 3\sqrt{2}.
x=\frac{i\sqrt{30-15\sqrt{2}}}{3} x=-\frac{i\sqrt{30-15\sqrt{2}}}{3}
Take the square root of both sides of the equation.
x=\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3} x=-\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
The equation is now solved.
\frac{\left(3x^{2}+10\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=5
Rationalize the denominator of \frac{3x^{2}+10}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3x^{2}+10\right)\sqrt{2}}{2}=5
The square of \sqrt{2} is 2.
\frac{3x^{2}\sqrt{2}+10\sqrt{2}}{2}=5
Use the distributive property to multiply 3x^{2}+10 by \sqrt{2}.
\frac{3x^{2}\sqrt{2}+10\sqrt{2}}{2}-5=0
Subtract 5 from both sides.
3x^{2}\sqrt{2}+10\sqrt{2}-10=0
Multiply both sides of the equation by 2.
3\sqrt{2}x^{2}+10\sqrt{2}-10=0
Reorder the terms.
x=\frac{0±\sqrt{0^{2}-4\times 3\sqrt{2}\left(10\sqrt{2}-10\right)}}{2\times 3\sqrt{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3\sqrt{2} for a, 0 for b, and 10\sqrt{2}-10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\sqrt{2}\left(10\sqrt{2}-10\right)}}{2\times 3\sqrt{2}}
Square 0.
x=\frac{0±\sqrt{\left(-12\sqrt{2}\right)\left(10\sqrt{2}-10\right)}}{2\times 3\sqrt{2}}
Multiply -4 times 3\sqrt{2}.
x=\frac{0±\sqrt{120\sqrt{2}-240}}{2\times 3\sqrt{2}}
Multiply -12\sqrt{2} times 10\sqrt{2}-10.
x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{2\times 3\sqrt{2}}
Take the square root of -240+120\sqrt{2}.
x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{6\sqrt{2}}
Multiply 2 times 3\sqrt{2}.
x=\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
Now solve the equation x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{6\sqrt{2}} when ± is plus.
x=-\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
Now solve the equation x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{6\sqrt{2}} when ± is minus.
x=\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3} x=-\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}