Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3x^{2}+10\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=5
Rationalize the denominator of \frac{3x^{2}+10}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3x^{2}+10\right)\sqrt{2}}{2}=5
The square of \sqrt{2} is 2.
\frac{3x^{2}\sqrt{2}+10\sqrt{2}}{2}=5
Use the distributive property to multiply 3x^{2}+10 by \sqrt{2}.
3x^{2}\sqrt{2}+10\sqrt{2}=5\times 2
Multiply both sides by 2.
3x^{2}\sqrt{2}+10\sqrt{2}=10
Multiply 5 and 2 to get 10.
3x^{2}\sqrt{2}=10-10\sqrt{2}
Subtract 10\sqrt{2} from both sides.
x^{2}=\frac{10-10\sqrt{2}}{3\sqrt{2}}
Dividing by 3\sqrt{2} undoes the multiplication by 3\sqrt{2}.
x^{2}=\frac{5\sqrt{2}-10}{3}
Divide 10-10\sqrt{2} by 3\sqrt{2}.
x=\frac{i\sqrt{30-15\sqrt{2}}}{3} x=-\frac{i\sqrt{30-15\sqrt{2}}}{3}
Take the square root of both sides of the equation.
x=\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3} x=-\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
The equation is now solved.
\frac{\left(3x^{2}+10\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=5
Rationalize the denominator of \frac{3x^{2}+10}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3x^{2}+10\right)\sqrt{2}}{2}=5
The square of \sqrt{2} is 2.
\frac{3x^{2}\sqrt{2}+10\sqrt{2}}{2}=5
Use the distributive property to multiply 3x^{2}+10 by \sqrt{2}.
\frac{3x^{2}\sqrt{2}+10\sqrt{2}}{2}-5=0
Subtract 5 from both sides.
3x^{2}\sqrt{2}+10\sqrt{2}-10=0
Multiply both sides of the equation by 2.
3\sqrt{2}x^{2}+10\sqrt{2}-10=0
Reorder the terms.
x=\frac{0±\sqrt{0^{2}-4\times 3\sqrt{2}\left(10\sqrt{2}-10\right)}}{2\times 3\sqrt{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3\sqrt{2} for a, 0 for b, and 10\sqrt{2}-10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\sqrt{2}\left(10\sqrt{2}-10\right)}}{2\times 3\sqrt{2}}
Square 0.
x=\frac{0±\sqrt{\left(-12\sqrt{2}\right)\left(10\sqrt{2}-10\right)}}{2\times 3\sqrt{2}}
Multiply -4 times 3\sqrt{2}.
x=\frac{0±\sqrt{120\sqrt{2}-240}}{2\times 3\sqrt{2}}
Multiply -12\sqrt{2} times 10\sqrt{2}-10.
x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{2\times 3\sqrt{2}}
Take the square root of -240+120\sqrt{2}.
x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{6\sqrt{2}}
Multiply 2 times 3\sqrt{2}.
x=\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
Now solve the equation x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{6\sqrt{2}} when ± is plus.
x=-\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
Now solve the equation x=\frac{0±2i\sqrt{60-30\sqrt{2}}}{6\sqrt{2}} when ± is minus.
x=\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3} x=-\frac{\sqrt[4]{2}i\sqrt{15\sqrt{2}-15}}{3}
The equation is now solved.