Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\frac{3x^{0}}{y}+2y^{-1}-\frac{1}{y}
Rewrite y^{-2} as y^{-3}y. Cancel out y^{-3} in both numerator and denominator.
\frac{3\times 1}{y}+2y^{-1}-\frac{1}{y}
Calculate x to the power of 0 and get 1.
\frac{3}{y}+2y^{-1}-\frac{1}{y}
Multiply 3 and 1 to get 3.
\frac{3}{y}+\frac{2y^{-1}y}{y}-\frac{1}{y}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2y^{-1} times \frac{y}{y}.
\frac{3+2y^{-1}y}{y}-\frac{1}{y}
Since \frac{3}{y} and \frac{2y^{-1}y}{y} have the same denominator, add them by adding their numerators.
\frac{3+2}{y}-\frac{1}{y}
Do the multiplications in 3+2y^{-1}y.
\frac{5}{y}-\frac{1}{y}
Do the calculations in 3+2.
\frac{4}{y}
Since \frac{5}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 5 to get 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3x^{0}}{y}+2y^{-1}-\frac{1}{y})
Rewrite y^{-2} as y^{-3}y. Cancel out y^{-3} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3\times 1}{y}+2y^{-1}-\frac{1}{y})
Calculate x to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{y}+2y^{-1}-\frac{1}{y})
Multiply 3 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3}{y}+\frac{2y^{-1}y}{y}-\frac{1}{y})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2y^{-1} times \frac{y}{y}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3+2y^{-1}y}{y}-\frac{1}{y})
Since \frac{3}{y} and \frac{2y^{-1}y}{y} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3+2}{y}-\frac{1}{y})
Do the multiplications in 3+2y^{-1}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{5}{y}-\frac{1}{y})
Do the calculations in 3+2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{4}{y})
Since \frac{5}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 5 to get 4.
-4y^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-4y^{-2}
Subtract 1 from -1.