Solve for x
x=9
Graph
Share
Copied to clipboard
\frac{3}{4}x+\frac{9}{4}=x
Divide each term of 3x+9 by 4 to get \frac{3}{4}x+\frac{9}{4}.
\frac{3}{4}x+\frac{9}{4}-x=0
Subtract x from both sides.
-\frac{1}{4}x+\frac{9}{4}=0
Combine \frac{3}{4}x and -x to get -\frac{1}{4}x.
-\frac{1}{4}x=-\frac{9}{4}
Subtract \frac{9}{4} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{9}{4}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x=\frac{-9\left(-4\right)}{4}
Express -\frac{9}{4}\left(-4\right) as a single fraction.
x=\frac{36}{4}
Multiply -9 and -4 to get 36.
x=9
Divide 36 by 4 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}