Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+6\right)\left(3x+7\right)=\left(4x+3\right)\left(5x+4\right)
Variable x cannot be equal to any of the values -3,-\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(x+3\right)\left(4x+3\right), the least common multiple of 4x+3,2x+6.
6x^{2}+32x+42=\left(4x+3\right)\left(5x+4\right)
Use the distributive property to multiply 2x+6 by 3x+7 and combine like terms.
6x^{2}+32x+42=20x^{2}+31x+12
Use the distributive property to multiply 4x+3 by 5x+4 and combine like terms.
6x^{2}+32x+42-20x^{2}=31x+12
Subtract 20x^{2} from both sides.
-14x^{2}+32x+42=31x+12
Combine 6x^{2} and -20x^{2} to get -14x^{2}.
-14x^{2}+32x+42-31x=12
Subtract 31x from both sides.
-14x^{2}+x+42=12
Combine 32x and -31x to get x.
-14x^{2}+x+42-12=0
Subtract 12 from both sides.
-14x^{2}+x+30=0
Subtract 12 from 42 to get 30.
x=\frac{-1±\sqrt{1^{2}-4\left(-14\right)\times 30}}{2\left(-14\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -14 for a, 1 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-14\right)\times 30}}{2\left(-14\right)}
Square 1.
x=\frac{-1±\sqrt{1+56\times 30}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-1±\sqrt{1+1680}}{2\left(-14\right)}
Multiply 56 times 30.
x=\frac{-1±\sqrt{1681}}{2\left(-14\right)}
Add 1 to 1680.
x=\frac{-1±41}{2\left(-14\right)}
Take the square root of 1681.
x=\frac{-1±41}{-28}
Multiply 2 times -14.
x=\frac{40}{-28}
Now solve the equation x=\frac{-1±41}{-28} when ± is plus. Add -1 to 41.
x=-\frac{10}{7}
Reduce the fraction \frac{40}{-28} to lowest terms by extracting and canceling out 4.
x=-\frac{42}{-28}
Now solve the equation x=\frac{-1±41}{-28} when ± is minus. Subtract 41 from -1.
x=\frac{3}{2}
Reduce the fraction \frac{-42}{-28} to lowest terms by extracting and canceling out 14.
x=-\frac{10}{7} x=\frac{3}{2}
The equation is now solved.
\left(2x+6\right)\left(3x+7\right)=\left(4x+3\right)\left(5x+4\right)
Variable x cannot be equal to any of the values -3,-\frac{3}{4} since division by zero is not defined. Multiply both sides of the equation by 2\left(x+3\right)\left(4x+3\right), the least common multiple of 4x+3,2x+6.
6x^{2}+32x+42=\left(4x+3\right)\left(5x+4\right)
Use the distributive property to multiply 2x+6 by 3x+7 and combine like terms.
6x^{2}+32x+42=20x^{2}+31x+12
Use the distributive property to multiply 4x+3 by 5x+4 and combine like terms.
6x^{2}+32x+42-20x^{2}=31x+12
Subtract 20x^{2} from both sides.
-14x^{2}+32x+42=31x+12
Combine 6x^{2} and -20x^{2} to get -14x^{2}.
-14x^{2}+32x+42-31x=12
Subtract 31x from both sides.
-14x^{2}+x+42=12
Combine 32x and -31x to get x.
-14x^{2}+x=12-42
Subtract 42 from both sides.
-14x^{2}+x=-30
Subtract 42 from 12 to get -30.
\frac{-14x^{2}+x}{-14}=-\frac{30}{-14}
Divide both sides by -14.
x^{2}+\frac{1}{-14}x=-\frac{30}{-14}
Dividing by -14 undoes the multiplication by -14.
x^{2}-\frac{1}{14}x=-\frac{30}{-14}
Divide 1 by -14.
x^{2}-\frac{1}{14}x=\frac{15}{7}
Reduce the fraction \frac{-30}{-14} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{14}x+\left(-\frac{1}{28}\right)^{2}=\frac{15}{7}+\left(-\frac{1}{28}\right)^{2}
Divide -\frac{1}{14}, the coefficient of the x term, by 2 to get -\frac{1}{28}. Then add the square of -\frac{1}{28} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{14}x+\frac{1}{784}=\frac{15}{7}+\frac{1}{784}
Square -\frac{1}{28} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{14}x+\frac{1}{784}=\frac{1681}{784}
Add \frac{15}{7} to \frac{1}{784} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{28}\right)^{2}=\frac{1681}{784}
Factor x^{2}-\frac{1}{14}x+\frac{1}{784}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{28}\right)^{2}}=\sqrt{\frac{1681}{784}}
Take the square root of both sides of the equation.
x-\frac{1}{28}=\frac{41}{28} x-\frac{1}{28}=-\frac{41}{28}
Simplify.
x=\frac{3}{2} x=-\frac{10}{7}
Add \frac{1}{28} to both sides of the equation.