Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-1\right)\left(3x+54\right)+3x\left(4x^{2}+9\right)=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Variable x cannot be equal to any of the values -\frac{1}{2},0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 3x\left(2x-1\right)\left(2x+1\right), the least common multiple of 6x^{2}+3x,4x^{2}-1,3x,3,1-4x^{2}.
6x^{2}+105x-54+3x\left(4x^{2}+9\right)=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Use the distributive property to multiply 2x-1 by 3x+54 and combine like terms.
6x^{2}+105x-54+12x^{3}+27x=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Use the distributive property to multiply 3x by 4x^{2}+9.
6x^{2}+132x-54+12x^{3}=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)xx^{2}
Combine 105x and 27x to get 132x.
6x^{2}+132x-54+12x^{3}=\left(4x^{2}-1\right)\left(x+\frac{3}{2}\right)-\frac{8}{3}\left(-3\right)x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
6x^{2}+132x-54+12x^{3}=4x^{3}+6x^{2}-x-\frac{3}{2}-\frac{8}{3}\left(-3\right)x^{3}
Use the distributive property to multiply 4x^{2}-1 by x+\frac{3}{2}.
6x^{2}+132x-54+12x^{3}=4x^{3}+6x^{2}-x-\frac{3}{2}-\left(-8x^{3}\right)
Multiply \frac{8}{3} and -3 to get -8.
6x^{2}+132x-54+12x^{3}=4x^{3}+6x^{2}-x-\frac{3}{2}+8x^{3}
The opposite of -8x^{3} is 8x^{3}.
6x^{2}+132x-54+12x^{3}=12x^{3}+6x^{2}-x-\frac{3}{2}
Combine 4x^{3} and 8x^{3} to get 12x^{3}.
6x^{2}+132x-54+12x^{3}-12x^{3}=6x^{2}-x-\frac{3}{2}
Subtract 12x^{3} from both sides.
6x^{2}+132x-54=6x^{2}-x-\frac{3}{2}
Combine 12x^{3} and -12x^{3} to get 0.
6x^{2}+132x-54-6x^{2}=-x-\frac{3}{2}
Subtract 6x^{2} from both sides.
132x-54=-x-\frac{3}{2}
Combine 6x^{2} and -6x^{2} to get 0.
132x-54+x=-\frac{3}{2}
Add x to both sides.
133x-54=-\frac{3}{2}
Combine 132x and x to get 133x.
133x=-\frac{3}{2}+54
Add 54 to both sides.
133x=\frac{105}{2}
Add -\frac{3}{2} and 54 to get \frac{105}{2}.
x=\frac{\frac{105}{2}}{133}
Divide both sides by 133.
x=\frac{105}{2\times 133}
Express \frac{\frac{105}{2}}{133} as a single fraction.
x=\frac{105}{266}
Multiply 2 and 133 to get 266.
x=\frac{15}{38}
Reduce the fraction \frac{105}{266} to lowest terms by extracting and canceling out 7.