Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2x+8}{x^{2}-4x-5}
Factor the expressions that are not already factored in \frac{3x+3}{x^{2}-4x-5}.
\frac{3}{x-5}-\frac{2x+8}{x^{2}-4x-5}
Cancel out x+1 in both numerator and denominator.
\frac{3}{x-5}-\frac{2x+8}{\left(x-5\right)\left(x+1\right)}
Factor x^{2}-4x-5.
\frac{3\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2x+8}{\left(x-5\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and \left(x-5\right)\left(x+1\right) is \left(x-5\right)\left(x+1\right). Multiply \frac{3}{x-5} times \frac{x+1}{x+1}.
\frac{3\left(x+1\right)-\left(2x+8\right)}{\left(x-5\right)\left(x+1\right)}
Since \frac{3\left(x+1\right)}{\left(x-5\right)\left(x+1\right)} and \frac{2x+8}{\left(x-5\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+3-2x-8}{\left(x-5\right)\left(x+1\right)}
Do the multiplications in 3\left(x+1\right)-\left(2x+8\right).
\frac{x-5}{\left(x-5\right)\left(x+1\right)}
Combine like terms in 3x+3-2x-8.
\frac{1}{x+1}
Cancel out x-5 in both numerator and denominator.
\frac{3\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2x+8}{x^{2}-4x-5}
Factor the expressions that are not already factored in \frac{3x+3}{x^{2}-4x-5}.
\frac{3}{x-5}-\frac{2x+8}{x^{2}-4x-5}
Cancel out x+1 in both numerator and denominator.
\frac{3}{x-5}-\frac{2x+8}{\left(x-5\right)\left(x+1\right)}
Factor x^{2}-4x-5.
\frac{3\left(x+1\right)}{\left(x-5\right)\left(x+1\right)}-\frac{2x+8}{\left(x-5\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and \left(x-5\right)\left(x+1\right) is \left(x-5\right)\left(x+1\right). Multiply \frac{3}{x-5} times \frac{x+1}{x+1}.
\frac{3\left(x+1\right)-\left(2x+8\right)}{\left(x-5\right)\left(x+1\right)}
Since \frac{3\left(x+1\right)}{\left(x-5\right)\left(x+1\right)} and \frac{2x+8}{\left(x-5\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+3-2x-8}{\left(x-5\right)\left(x+1\right)}
Do the multiplications in 3\left(x+1\right)-\left(2x+8\right).
\frac{x-5}{\left(x-5\right)\left(x+1\right)}
Combine like terms in 3x+3-2x-8.
\frac{1}{x+1}
Cancel out x-5 in both numerator and denominator.